1
|
Erim B, Ciğeroğlu Z, Şahin S, Vasseghian Y. Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe 3O 4 under UV-A irradiation. CHEMOSPHERE 2022; 291:132929. [PMID: 34800511 DOI: 10.1016/j.chemosphere.2021.132929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
In this study, SWCNT/ZnO/Fe3O4 heterojunction composite was prepared for enhancing the degradation of β-lactam drugs such as cefixime (CFX) from an aqueous solution. The effects of several factors such as pH, initial concentration of CFX, and photocatalyst dose were investigated. Among them, pH was the most effective parameter for the degradation of CFX. Pareto graph revealed that the degradation process was accelerated at acidic conditions. The surface morphology test such as scanning electron microscopy (SEM) was applied to enlighten the surface of the functionalized SWCNT/ZnO/Fe3O4 photocatalyst. Highly advanced analyzes such as X-ray Photoelectron Spectroscopy (XPS), Energy Dispersive Spectrometry (EDX), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and point of zero charge were included to explain the structure of the photocatalyst. The response surface methodology's results show that the optimum CFX efficiency was fully achieved at 94.19%. The optimal conditions with lower standard error (2.08) were given as pH of 5.93, 22.76 ppm of CFX, and 0.46 g L-1 of the amount of photocatalyst. Besides, the obtained photocatalyst can be easily used many times owing to its high reusability. SWCNT/ZnO/Fe3O4 photocatalyst might be recommended to be used for the mineralizing of drug compounds such as antibiotics in water. Moreover, thiazol-2-ol, N-(dihydroxymethyl)-2-(2-hydroxythiazol-4-yl)acetamide,(S)-N-(2-amino-1-hydroxy-2-oxoethyl)-2-(2 hydroxythiazol-4-yl), and 2-(2-hydroxythiazol-4-yl)-N-((2R,3R)-2-mercapto-4-oxoazetidin-3-yl)acetamide were among the detected intermediates products from the cefixime degradation in the process.
Collapse
Affiliation(s)
- Berna Erim
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey.
| | - Selin Şahin
- Department of Chemical Engineering, Faculty of Engineering, Istanbul-Cerrahpaşa University, 34320, İstanbul, Turkey
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
2
|
Li FZ, He J, Liu SS, Yang LP, Xue D. RETRACTED: Therapeutic effect of two Co(II) coordination polymers by inhibiting tumor cell proliferation and invasion on pancreatic cancer. ARAB J CHEM 2022; 15:103572. [DOI: 10.1016/j.arabjc.2021.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Structural investigation and Hirshfeld surface analysis of two polymorphs of 2-(4-Methylbenzamido)-5-(4-fluoro-3-phenoxyphenyl)-1,3,4-thiadiazoles. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Inhibition of two Cu(II) and Mn(II) coordination polymers on the surgical site infections by inhibiting the bacterial biofilm formation. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhang Y, Wang J, Zhao S, Serdechnova M, Blawert C, Wang H, Zheludkevich ML, Chen F. Double-Ligand Strategy to Construct an Inhibitor-Loaded Zn-MOF and Its Corrosion Protection Ability for Aluminum Alloy 2A12. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51685-51694. [PMID: 34670367 DOI: 10.1021/acsami.1c13738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A promising double-ligand strategy for the delivery of active corrosion inhibitors by a Zn(II)-based metal-organic framework (Zn-MOF) is developed. Zn-MOF compounds were synthesized by a facile one-pot solvothermal method and characterized. The Zn-MOF is based on the corrosion inhibitor benzotriazole (BTA) and 2,5-furandicarboxylic acid (H2FDA) ligand, which is a promising renewable building block alternative to terephthalic or isophthalic acid. The crystal structure and morphology are characterized by single-crystal X-ray diffraction analysis, powder X-ray diffraction analysis (PXRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The synthesized MOF crystallites are in the trigonal space group R3c with the cell parameters in a three-dimensional (3D) anionic framework. Their ability to inhibit the corrosion process of aluminum alloy 2A12 in NaCl solution was also evaluated by immersion tests in solutions with and without a MOF. The postcorrosion analysis was performed by SEM and X-ray photoelectron spectroscopy (XPS). Additional information about the inhibition efficiency was obtained by electrochemical impedance spectroscopy (EIS). The results suggest that the as-synthesized MOF can release the inhibitors and form protective layers effectively on the surface of the aluminum alloy. The use of inhibitor-loaded MOF nanocontainers provides promising opportunities for the smart delivery of inhibitors and effective corrosion protection of 2A12 aluminum alloys.
Collapse
Affiliation(s)
- You Zhang
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Juping Wang
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Shuai Zhao
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Maria Serdechnova
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Carsten Blawert
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Hao Wang
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mikhail L Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
- Faculty of Engineering, Kiel University, Kiel 24143, Germany
| | - Fei Chen
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
6
|
Modabber G, Sepahi AA, Yazdian F, Rashedi H. Surfactin production in the bioreactor: Emphasis on magnetic nanoparticles application. Eng Life Sci 2020; 20:466-475. [PMID: 33204233 PMCID: PMC7645645 DOI: 10.1002/elsc.201900163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 11/15/2022] Open
Abstract
Surfactin is one of the main lipopeptide biosurfactants produced by different species of Bacillus subtilis. This study aims to analyze the effect of starch-coated Fe0 and Fe3+ nanoparticles on the biomass and biosurfactant production of Bacillus subtilis. Out of 70 soil samples, 20 Bacillus were isolated and genome sequenced by biochemical methods and 16S rRNA gene. Quantitative and qualitative screening methods were used to isolate and detect biosurfactant production. For the aim of this study, 61 and 63 (Bacillus subtilis subsp. Inaquosorum) were selected. Then, hemolytic activity, biomass amount, surfactant production, and reduction of surface tension in Minimal Salt Medium containing Fe0 and Fe3+ nanoparticles were examined after 48, 72, and 96 h of culture. Strain 61 was the best bacterium and Fe3+ was the best nanoparticle. The results were compared with the results of non-nanoparticle bioreactor. The results showed the amount of biomass, surfactin, and surface tension decrease, 72 h after growth in 61 strain containing Fe3+ reached the highest values. Surfactin from strain 61 culture in the Fe3+nanoparticle bioreactor after 72 h of growth showed higher production than the same strain culture after 72 h without Fe3+, if continuing the research, this strain can be commercialized in the future.
Collapse
Affiliation(s)
- Glayol Modabber
- Department of Microbiology, Faculty of Biological SciencesIslamic Azad UniversityTehranIran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological SciencesIslamic Azad UniversityTehranIran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and TechnologiesUniversity of TehranTehranIran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of EngineeringUniversity of TehranTehranIran
| |
Collapse
|
7
|
Fatollahi P, Ghasemi M, Yazdian F, Sadeghi A. Ectoine production in bioreactor by Halomonas elongata DSM2581: Using MWCNT and Fe-nanoparticle. Biotechnol Prog 2020; 37:e3073. [PMID: 32862555 DOI: 10.1002/btpr.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Halomonas elongate produces ectoine to protect itselt from environmental stresses. In this research, important factors in the production of ectoine were optimized using statistical methods to achieve the best production efficiency in bioreactor. Screening important variables (ectoine, hydroxyectoine, l-aspartic acid, and glutamate) on H. elongate growth showed that ectoine and l-aspartic acid directly affect ectoine production. Two nanostructures, multiwalled carbon nanotube (MWCNT) and iron oxide nanoparticle (Fe2 O3 NPs), were used to increase the availability of substrate for the microorganism. The results showed that Fe2 O3 nanoparticles and MWCNT could have a negative or positive effect on bacterial growth and ectoine production depending on the concentration of nanoparticles. At optimized conditions, the amounts of bacterial growth and ectoine production in fermenter were 10.4 g/L and 14.25 g/L, respectively. Therefore, it could be concluded that nanoparticles improve bacterial growth and ectoine production at optimized concentrations.
Collapse
Affiliation(s)
- Parvaneh Fatollahi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Ghasemi
- Faculty of Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Akram Sadeghi
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, Karaj, Iran
| |
Collapse
|
8
|
Mathew A, Mathew B, Koshy EP. Polymer supported bromoderivatives of 2-pyrrolidone: an efficient reagent for the microwave assisted conversion of trans-cinnamic acid to trans-β-bromostyrene. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|