1
|
Shan CW, Chen Z, Han GC, Feng XZ, Kraatz HB. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024; 271:125638. [PMID: 38237279 DOI: 10.1016/j.talanta.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein that has many important physiological functions, including transportation, immunosuppression, and induction of apoptosis by T lymphocytes. AFP is closely related to the development of hepatocellular carcinoma and many kinds of tumors, all of which can show high concentrations, so it is used as a positive test indicator for many kinds of tumors. This paper reviews recent advances in the detection of the tumor marker AFP based on three immuno-biosensors: electrochemical (EC), photoelectrochemical (PEC), and electrochemical luminescence (ECL). The electrodes are modified by different materials or homemade composites, different signaling molecules are selected as single probes or dual probes for the detection of AFP. The detection limit was as low as 3 fg/mL, which indicated that the AFP immunosensor had achieved highly sensitive detection. In addition, we also reviewed and summarized the current development status and application prospect of AFP immunoelectrochemical sensors. There are not too many researches on immunosensors based on dual-signal ratios, and the commonly used probes are methylene blue (MB) and ferrocene (Fc). It would be more innovative to have more novel signaling molecules as probes to prepare dual-signal ratio sensors.
Collapse
Affiliation(s)
- Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
2
|
Jiang C, Xie L, Yan F, Liang Z, Liang J, Huang K, Li H, Wang Y, Luo L, Li T, Ning D, Tang L, Ya Y. A novel electrochemical aptasensor based on polyaniline and gold nanoparticles for ultrasensitive and selective detection of ascorbic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4010-4020. [PMID: 37545402 DOI: 10.1039/d3ay00806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Ascorbic acid (AA) is involved in many physiological activities of the body and plays an important role in maintaining and promoting human health. It is also present in many natural and artificial foods. Therefore, the development of highly sensitive and accurate AA sensors is highly desirable for human health monitoring, as well as other commercial application fields. Herein, an ultrasensitive and selective electrochemical sensor based on an aptamer was developed for the determination of AA for the first time. The aptasensor was fabricated by modifying a composite made of polyaniline (PANI) and gold nanoparticles (AuNPs) on a glassy carbon electrode. The morphologies and electrochemical properties of the resulting electrodes were characterized by various analytical methods. The results indicated relatively good electrical conduction properties of PANI for accelerated electron transfer. The modification with AuNPs provided signal amplification, suitable for applications as novel platforms for the sensitive sensing of AA. Under optimized conditions, the proposed aptasensor displayed a wide linear response toward the detection of AA from 1.0 to 1.0 × 105 ng L-1 coupled with a low detection limit of 0.10 ng L-1. The sensor also exhibited excellent selectivity and high stability, with at least 2000-fold higher sensitivity than similar previously reported methods. Importantly, the aptasensor exhibited promising properties for the determination of AA in real fruits, vegetables, and infant milk powder, thereby showing potential for food analysis.
Collapse
Affiliation(s)
- Cuiwen Jiang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Liping Xie
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Feiyan Yan
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zhongdan Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jing Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Kejing Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Huiling Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanli Wang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Lihong Luo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Tao Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Dejiao Ning
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Li Tang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Ning Q, Feng S, Cheng Y, Li T, Cui D, Wang K. Point-of-care biochemical assays using electrochemical technologies: approaches, applications, and opportunities. Mikrochim Acta 2022; 189:310. [PMID: 35918617 PMCID: PMC9345663 DOI: 10.1007/s00604-022-05425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022]
Abstract
Against the backdrop of hidden symptoms of diseases and limited medical resources of their investigation, in vitro diagnosis has become a popular mode of real-time healthcare monitoring. Electrochemical biosensors have considerable potential for use in wearable products since they can consistently monitor the physiological information of the patient. This review classifies and briefly compares commonly available electrochemical biosensors and the techniques of detection used. Following this, the authors focus on recent studies and applications of various types of sensors based on a variety of methods to detect common compounds and cancer biomarkers in humans. The primary gaps in research are discussed and strategies for improvement are proposed along the dimensions of hardware and software. The work here provides new guidelines for advanced research on and a wider scope of applications of electrochemical biosensors to in vitro diagnosis.
Collapse
Affiliation(s)
- Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Zia TUH, Ali Shah AUH. Understanding the adsorption of 1 NLB antibody on polyaniline nanotubes as a function of zeta potential and surface charge density for detection of hepatitis C core antigen: A label-free impedimetric immunosensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Morshed M, Wang J, Gao M, Wang Z. Poly-2-amino-benzonitrile, a wide dynamic pH linear responding material. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|