1
|
Kandagatla HP, Kathawala MH, Syed A, Verbić TŽ, Avdeef A, Kuentz M, Serajuddin ATM. Highly increasing solubility of clofazimine, an extremely water-insoluble basic drug, in lipid-based SEDDS using digestion products of long-chain lipids. J Pharm Sci 2025; 114:103782. [PMID: 40185473 DOI: 10.1016/j.xphs.2025.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Clofazimine (CFZ) is a highly effective antibiotic against leprosy and drug-resistant tuberculosis and is on the WHO List of Essential Drugs. However, no CFZ product with optimal bioavailability is available worldwide. The manufacturer withdrew its only marketed product, presumably due to poor and erratic bioavailability because of extremely low aqueous solubility in the gastrointestinal pH range. We developed a self-emulsifying drug delivery system (SEDDS) using a lipid digestion product (LDP) containing glyceryl monooleate and oleic acid at ∼1:2 molar ratio to increase drug solubility and ensure rapid dispersion into microemulsion. While solubilities of CFZ in glyceryl monooleate, glyceryl trioleate, and two common surfactants (Tween 80 and Kolliphor EL) were comparatively low (<15 mg/g), oleic acid provided a very high solubility of ∼500 mg/g. Because of the presence of oleic acid, the clofazimine solubility in SEDDS containing a 50:50 w/w mixture of LDP and surfactants increased to 130 mg/g. Two formulations having 50 or 100 mg CFZ in one gram of SEDDS were developed. They dispersed rapidly and almost completely in simulated intestinal fluid and in the USP pH 6.8 phosphate buffer containing 3 mM sodium taurocholate. There was some precipitation of CFZ as the HCl salt at low gastric pH during dispersion testing, but the effect could be avoided using enteric-coated capsules. Thus, an enteric-coated lipid-based formulation for CFZ with as high as 100 mg/g drug loading was developed, providing complete drug release and producing microemulsions under intestinal pH conditions.
Collapse
Affiliation(s)
- Hari P Kandagatla
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mufaddal H Kathawala
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Amber Syed
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Tatjana Ž Verbić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Republic of Serbia
| | | | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
2
|
de Oliveira Neto JG, Bezerra RDS, Domingos FNB, Lima ADSG, Souto EB, Lage MR, da Silva LM, Dos Santos AO. A new coamorphous ethionamide with enhanced solubility: Preparation, characterization, in silico pharmacokinetics, and controlled release by encapsulation. Int J Pharm 2025; 670:125159. [PMID: 39746580 DOI: 10.1016/j.ijpharm.2024.125159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized. Density functional theory (DFT) calculations were performed to analyze the interactions between ETH and MND in the heterodimer. These results contributed to the suitable assignment of infrared (IR) vibrational modes, to determine the chemical reactivity descriptors and the electronic indices of each component of the molecule. Additionally, Hirshfeld surfaces analysis and calculations of absorption, distribution, metabolism, and excretion (ADME) parameters were performed to examine intermolecular interactions and predict the in silico pharmacokinetic profile of the ETH-MND compound and its forming molecules. Powder X-ray diffraction data confirmed the formation of a coamorphous binary system in the 1:2 and 1:3 ETH and MND ratios. Furthermore, the ETH-MND (1:3) solid dispersion remained amorphous for up to 150 days when stored at 38 °C and 75 % relative humidity. DFT calculations, conducted both in vacuum and in ethanol, indicated that the formation of the coamorphous system is driven by hydrogen bonding between the NH2 groups of ETH and the C=O group of MND. Thermodynamic analysis showed that intermolecular interactions are favored in the gas phase, with Gibbs free energy of -3.20 kcal/mol. The IR spectra showed a correlation between experimental and calculated data. Thermal analyses revealed glass transition temperatures of 59 °C (1:2 ratio) and 61 °C (1:3 ratio), indicating thermal stability of the coamorphous materials. Additionally, dissolution tests showed a 3.58-fold increase in the solubility of ETH compared to its crystalline form. The encapsulation of ETH-MND coamorphous systems in sodium alginate spheres via polyelectrolyte complexation was also investigated, demonstrating significant controlled drug release over 480 min.
Collapse
Affiliation(s)
- João G de Oliveira Neto
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil
| | - Raychiman D S Bezerra
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil
| | - Francisco N B Domingos
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil
| | - Antonio D S G Lima
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
| | - Mateus R Lage
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil
| | - Luzeli M da Silva
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil
| | - Adenilson O Dos Santos
- Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil.
| |
Collapse
|
3
|
Campos Pacheco JE, Yalovenko T, Riaz A, Kotov N, Davids C, Persson A, Falkman P, Feiler A, Godaly G, Johnson CM, Ekström M, Pilkington GA, Valetti S. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis. J Control Release 2024; 369:231-250. [PMID: 38479444 DOI: 10.1016/j.jconrel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/24/2024]
Abstract
Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 μm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 μm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.
Collapse
Affiliation(s)
- Jesús E Campos Pacheco
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Tetiana Yalovenko
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Azra Riaz
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Nikolay Kotov
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Camilla Davids
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alva Persson
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Peter Falkman
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Adam Feiler
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Nanologica AB (publ), Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - C Magnus Johnson
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | - Georgia A Pilkington
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Nanologica AB (publ), Forskargatan 20G, 151 36 Södertälje, Sweden.
| | - Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden.
| |
Collapse
|
4
|
Improving the Antimycobacterial Drug Clofazimine through Formation of Organic Salts by Combination with Fluoroquinolones. Int J Mol Sci 2023; 24:ijms24021402. [PMID: 36674923 PMCID: PMC9865903 DOI: 10.3390/ijms24021402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.
Collapse
|
5
|
Thakur AK, Kumar R, Vipin Kumar V, Kumar A, Kumar Gaurav G, Naresh Gupta K. A critical review on thermodynamic and hydrodynamic modeling and simulation of liquid antisolvent crystallization of pharmaceutical compounds. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
da Rocha NP, Barbosa EJ, Barros de Araujo GL, Bou-Chacra NA. Innovative drug delivery systems for leprosy treatment. Indian J Dermatol Venereol Leprol 2022; 88:1-6. [PMID: 35434984 DOI: 10.25259/ijdvl_1119_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Sarraguça MC, Ribeiro PRS, Nunes C, Seabra CL. Solids Turn into Liquids—Liquid Eutectic Systems of Pharmaceutics to Improve Drug Solubility. Pharmaceuticals (Basel) 2022; 15:ph15030279. [PMID: 35337077 PMCID: PMC8951776 DOI: 10.3390/ph15030279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The low solubility of active pharmaceutical ingredients (APIs) is a problem in pharmaceutical development. Several methodologies can be used to improve API solubility, including the use of eutectic systems in which one of the constituents is the API. This class of compounds is commonly called Therapeutic Deep Eutectic Systems (THEDES). THEDES has been gaining attention due to their properties such as non-toxicity, biodegradability, and being non-expensive and easy to prepare. Since the knowledge of the solid liquid diagram of the mixture and the ideal eutectic point is necessary to ascertain if a mixture is a deep eutectic or just a eutectic mixture that is liquid at ambient temperature, the systems studied in this work are called Therapeutic Liquid Eutectic Systems (THELES). Therefore, the strategy proposed in this work is to improve the solubility of chlorpropamide and tolbutamide by preparing THELES. Both APIs are sulfonylurea compounds used for the treatment of type 2 diabetes mellitus and have low solubility in water. To prepare the THELES, several coformers were tested, namely, tromethamine, L(+)-arginine, L-tryptophan, citric acid, malic acid, ascorbic acid, and p-aminobenzoic acid, in molar ratios of 1:1 and 1:2. To improve viscosity, water was added in different molar ratios to all systems. THELES were characterized by mid-infrared spectroscopy (MIR), and differential scanning calorimetry. Their viscosity, solubility, and permeability were also determined. Their stability at room temperature and 40 °C was accessed by MIR. Cytocompatibility was performed by metabolic activity and cell lysis evaluation, according to ISO10993-5:2009, and compared with the crystalline APIs. THELES with TRIS were successfully synthesized for both APIs. Results showed an increased solubility without a decrease in the permeability of the APIs in the THELES when compared with the pure APIs. The THELES were also considered stable for 8 weeks at ambient temperature. The cells studied showed that the THELES were not toxic for the cell lines used.
Collapse
Affiliation(s)
- Mafalda C. Sarraguça
- LAQV-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.N.); (C.L.S.)
- Correspondence:
| | - Paulo R. S. Ribeiro
- Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz 65900-410, Brazil;
| | - Cláudia Nunes
- LAQV-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.N.); (C.L.S.)
| | - Catarina Leal Seabra
- LAQV-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.N.); (C.L.S.)
| |
Collapse
|
8
|
Suo Z, Sun Q, Wei X, Yuan N, Gan N, Wang P, Zhang Y, Li H. A New Reasonable Interpretation of Azilsartan Form II: a Hydrate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Bodart L, Prinzo M, Derlet A, Tumanov N, Wouters J. Taking advantage of solvate formation to modulate drug–drug ratio in clofaziminium diclofenac salts. CrystEngComm 2021. [DOI: 10.1039/d0ce01400a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clever solvent selection allows crystallization of a great structural variety of (un)solvated salts combining clofazimine and diclofenac.
Collapse
Affiliation(s)
- Laurie Bodart
- University of Namur (UNamur)Namur Medicine and Drug Innovation Center – Namur Research Institute for LIfe Science (NAMEDIC-NARILIS)
- Namur Institute of Structured Matter (NISM)
- Department of Chemistry
- University of Namur (UNamur)
- 5000 Namur
| | - Maria Prinzo
- Drug Science Department
- University of Catania
- 95125 Catania
- Italy
| | - Amélie Derlet
- University of Namur (UNamur)Namur Medicine and Drug Innovation Center – Namur Research Institute for LIfe Science (NAMEDIC-NARILIS)
- Namur Institute of Structured Matter (NISM)
- Department of Chemistry
- University of Namur (UNamur)
- 5000 Namur
| | - Nikolay Tumanov
- University of Namur (UNamur)Namur Medicine and Drug Innovation Center – Namur Research Institute for LIfe Science (NAMEDIC-NARILIS)
- Namur Institute of Structured Matter (NISM)
- Department of Chemistry
- University of Namur (UNamur)
- 5000 Namur
| | - Johan Wouters
- University of Namur (UNamur)Namur Medicine and Drug Innovation Center – Namur Research Institute for LIfe Science (NAMEDIC-NARILIS)
- Namur Institute of Structured Matter (NISM)
- Department of Chemistry
- University of Namur (UNamur)
- 5000 Namur
| |
Collapse
|
10
|
Bodart L, Derlet A, Buol X, Leyssens T, Tumanov N, Wouters J. Combining Two Antitubercular Drugs, Clofazimine and 4-Aminosalicylic Acid, in Order to Improve Clofazimine Aqueous Solubility and 4-Aminosalicylic Acid Thermal Stability. J Pharm Sci 2020; 109:3645-3652. [PMID: 32976899 DOI: 10.1016/j.xphs.2020.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Four forms of a salt combining two antitubercular drugs, clofazimine and 4-aminosalicylic acid, are reported and the crystal structure of two of these forms are described. TG/DSC analysis of all four forms demonstrate an increase in the temperature at which degradation (upon decarboxylation) occurs in comparison to pure 4-aminosalicylic acid. Water solubility evaluation indicates a significant increase of the amount of clofazimine detected in water (10.26 ± 0.52 μg/mL for form I, 12.27 ± 0.32 μg/mL for form II, 7.15 ± 0.43 μg/mL for form III and 8.50 ± 1.24 μg/mL for form IV) in comparison to pure clofazimine (0.20 ± 0.03 μg/mL).
Collapse
Affiliation(s)
- Laurie Bodart
- Namur Medicine and Drug Innovation Center - Namur Research Institute for LIfe Science (NAMEDIC-NARILIS), Namur Institute of Structured Matter (NISM), Department of Chemistry, University of Namur (UNamur), 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Amélie Derlet
- Namur Medicine and Drug Innovation Center - Namur Research Institute for LIfe Science (NAMEDIC-NARILIS), Namur Institute of Structured Matter (NISM), Department of Chemistry, University of Namur (UNamur), 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Xavier Buol
- Institute of Condensed Matter and Nanosciences, UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
| | - Tom Leyssens
- Institute of Condensed Matter and Nanosciences, UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
| | - Nikolay Tumanov
- Namur Medicine and Drug Innovation Center - Namur Research Institute for LIfe Science (NAMEDIC-NARILIS), Namur Institute of Structured Matter (NISM), Department of Chemistry, University of Namur (UNamur), 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Johan Wouters
- Namur Medicine and Drug Innovation Center - Namur Research Institute for LIfe Science (NAMEDIC-NARILIS), Namur Institute of Structured Matter (NISM), Department of Chemistry, University of Namur (UNamur), 61 Rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|