1
|
Moussa Z, Ramanathan M, Al-Masri HT, Ahmed SA. Recent Progress in the Synthesis of Benzoxazin-4-Ones, Applications in N-Directed Ortho-Functionalizations, and Biological Significance. Molecules 2024; 29:5710. [PMID: 39683871 PMCID: PMC11643898 DOI: 10.3390/molecules29235710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The development of efficient synthetic procedures to access fused N, O-heterocyclic skeletons has been a pivotal research topic in organic synthesis for several years. Owing to the applications of N, O-fused heterocycles in organic synthesis, material sciences, and medicinal chemistry, significant efforts have been dedicated to design novel methods for their construction. To this end, 1,3-benzoxazin-4-ones are privileged candidates for N, O-heterocyclic molecules often found in natural products, agrochemicals, and materials science applications. In this review, we aim to summarize the existing literature on the synthesis of 1,3-benzoxazin-4-ones from 2010 onwards. Moreover, 1,3-benzoxazin-4-ones have also been identified as an excellent native directing group for the ortho-functionalization via C-H activation, which is often a strenuous task requiring pre-functionalized substrates. In the latter part of this report, we compiled several interesting examples of N-directed functionalizations of 1,3-benzoxazin-4-ones. Additionally, to emphasize biological importance, recent developments on the anticancer evaluations of benzoxazine-4-one core are included. We believe that by harnessing the methodologies discussed herein, new possibilities could be unlocked for the synthesis of fused N, O-heterocycles, leading to the development of novel biologically active compounds and functional materials.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P.O. Box 130040, Mafraq 25113, Jordan
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
2
|
Popova SA, Shevchenko OG, Chukicheva IY. Synthesis of new coumarin[1,3]oxazine derivatives of 7-hydroxy-6-isobornyl-4-methylcoumarin and their antioxidant activity. Chem Biol Drug Des 2022; 100:994-1004. [PMID: 34553497 DOI: 10.1111/cbdd.13955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 01/25/2023]
Abstract
In this work, we synthesized a series of new 9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazine-2-on derivatives which incorporate isobornylcoumarin and 1,3-oxazine moieties. A structure-antioxidant activity relationship was analyzed. A comparative evaluation of their radical scavenging activity, antioxidant and membrane-protective properties was carried out in test with DPPH, as well as on the models of Fe2+ /ascorbate-initiated lipid peroxidation and oxidative hemolysis of mammalian red blood cells. The results suggest that all the obtained coumarin[1,3]oxazine derivatives of 7-hydroxy-6-isobornyl-4-methylcoumarin are capable of exhibiting antioxidant activity in various model systems. Compound 7 with a phenyl fragment, combining high radical scavenging activity and the ability to inhibit Fe2+ /ascorbate-initiated peroxidation of animal lipids in a heterogeneous environment, also proved to be the most effective membrane protector and antioxidant in the model of H2 O2 -induced erythrocyte hemolysis.
Collapse
Affiliation(s)
- Svetlana A Popova
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| | - Irina Yu Chukicheva
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| |
Collapse
|
3
|
In Vitro and In Silico Assessment of Bioactivity Properties and Pharmacokinetic Studies of New 3,5-Disubstituted-1,2,4-Triazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R, Perveen S, Al-Taweel A, Iqbal J, Shahzad SA. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules 2022; 27:molecules27196235. [PMID: 36234774 PMCID: PMC9570995 DOI: 10.3390/molecules27196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure–activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.
Collapse
Affiliation(s)
- Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
- Correspondence: or
| |
Collapse
|
5
|
Synthesis and fungicidal activity of novel 6H-benzimidazo[1,2-c][1,3]benzoxazin-6-ones. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02946-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Khan A, Khan M, Halim SA, Khan ZA, Shafiq Z, Al-Harrasi A. Quinazolinones as Competitive Inhibitors of Carbonic Anhydrase-II (Human and Bovine): Synthesis, in-vitro, in-silico, Selectivity, and Kinetics Studies. Front Chem 2020; 8:598095. [PMID: 33335888 PMCID: PMC7736042 DOI: 10.3389/fchem.2020.598095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Carbonic anhydrase-II (CA-II) is associated with glaucoma, malignant brain tumors, and renal, gastric, and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. CA-II inhibitors can be used to reduce the intraocular pressure usually associated with glaucoma. In search of potent CA-II inhibitors, a series of quinazolinones derivatives (4a-p) were synthesized and characterized by IR and NMR spectroscopy. The inhibitory potential of all the compounds was evaluated against bovine carbonic anhydrase-II (bCA-II) and human carbonic anhydrase-II (hCA-II), and compounds displayed moderate to significant inhibition with IC50 values of 8.9-67.3 and 14.0-59.6 μM, respectively. A preliminary structure-activity relationship suggested that the presence of a nitro group on the phenyl ring at R position contributes significantly to the overall activity. Kinetics studies of the most active inhibitor, 4d, against both bCA-II and hCA-II were performed to investigate the mode of inhibition and to determine the inhibition constants (Ki). According to the kinetics results, 4d is a competitive inhibitor of bCA-II and hCA-II with Ki values of 13.0 ± 0.013 and 14.25 ± 0.017 μM, respectively. However, the selectivity index reflects that the compounds 4g and 4o are more selective for hCA-II. The binding mode of these compounds within the active sites of bCA-II and hCA-II was investigated by structure-based molecular docking. The docking results are in complete agreement with the experimental findings.
Collapse
Affiliation(s)
- Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|