1
|
Byrne AJ, Bright SA, McKeown JP, Bergin A, Twamley B, McElligott AM, Noorani S, Kandwal S, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Pro-Apoptotic Effects of Nitrovinylanthracenes and Related Compounds in Chronic Lymphocytic Leukaemia (CLL) and Burkitt's Lymphoma (BL). Molecules 2023; 28:8095. [PMID: 38138584 PMCID: PMC10746112 DOI: 10.3390/molecules28248095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a malignancy of the immune B lymphocyte cells and is the most common leukaemia diagnosed in developed countries. In this paper, we report the synthesis and antiproliferative effects of a series of (E)-9-(2-nitrovinyl)anthracenes and related nitrostyrene compounds in CLL cell lines and also in Burkitt's lymphoma (BL) cell lines, a rare form of non-Hodgkin's immune B-cell lymphoma. The nitrostyrene scaffold was identified as a lead structure for the development of effective compounds targeting BL and CLL. The series of structurally diverse nitrostyrenes was synthesised via Henry-Knoevenagel condensation reactions. Single-crystal X-ray analysis confirmed the structure of (E)-9-chloro-10-(2-nitrobut-1-en-1-yl)anthracene (19f) and the related 4-(anthracen-9-yl)-1H-1,2,3-triazole (30a). The (E)-9-(2-nitrovinyl)anthracenes 19a, 19g and 19i-19m were found to elicit potent antiproliferative effects in both BL cell lines EBV-MUTU-1 (chemosensitive) and EBV+ DG-75 (chemoresistant) with >90% inhibition at 10 μM. Selected (E)-9-(2-nitrovinyl)anthracenes demonstrated potent antiproliferative activity in CLL cell lines, with IC50 values of 0.17 μM (HG-3) and 1.3 μM (PGA-1) for compound 19g. The pro-apoptotic effects of the most potent compounds 19a, 19g, 19i, 19l and 19m were demonstrated in both CLL cell lines HG-3 and PGA-1. The (E)-nitrostyrene and (E)-9-(2-nitrovinyl)anthracene series of compounds offer potential for further development as novel chemotherapeutics for CLL.
Collapse
Affiliation(s)
- Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - James. P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Adam Bergin
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Brendan Twamley
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland;
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Shubhangi Kandwal
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| |
Collapse
|
2
|
Thirumurugan R, Ramalingam S, Periandy S, Aarthi R, Karpagam J. Dual-Opto-electronic evaluation, and dielectric profile investigation of organic NLO crystal; 4-Dimethylamino-4′-Nitrobiphenyl using computational tool. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Jebasingh Kores J, Antony Danish I, Sasitha T, Gershom Stuart J, Jimla Pushpam E, Winfred Jebaraj J. Spectral, NBO, NLO, NCI, aromaticity and charge transfer analyses of anthracene-9,10-dicarboxaldehyde by DFT. Heliyon 2021; 7:e08377. [PMID: 34825087 PMCID: PMC8605071 DOI: 10.1016/j.heliyon.2021.e08377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Anthracene-9,10-dicarboxaldehyde (ADCA) is a polynuclear aromatic compound that has a planar structure with double bonds which are in conjugation. The molecule is subjected to theoretical investigation with DFT/B3LYP/6-311++G(d,p) basis set to find out the electronic structural properties and stability. Theoretical and experimental vibrational analyses are carried out. NBO studies predict that the molecule has high stability. NCI interaction studies reveal that Van der Waals force and steric effect are seen in the molecule. A shaded surface map with a projection of LOL analysis pointed out that electron depletion area is seen in this molecule. The tunnelling current is more in the boundary rings than the central ring. It is docked with the protein 4COF and the binding energy is found to be -6.6 kcal/mol. Electrons excitation analysis is performed and found that local excitation takes place for the lowest five excitations. The aromaticity of the molecule is also thoroughly investigated.
Collapse
Affiliation(s)
- J. Jebasingh Kores
- Department of Physics, Pope's College (Autonomous), Sawyerpuram, 628251, Tamilnadu, India
| | - I. Antony Danish
- Department of Chemistry, Sadakathullah Appa College (Autonomous), Tirunelveli, 627011, Tamilnadu, India
| | - T. Sasitha
- Department of Chemistry, St. John's College, Tirunelveli, 627002, Tamilnadu, India
| | - J. Gershom Stuart
- Department of Chemistry, St. John's College, Tirunelveli, 627002, Tamilnadu, India
| | - E. Jimla Pushpam
- Department of Chemistry, St. John's College, Tirunelveli, 627002, Tamilnadu, India
| | - J. Winfred Jebaraj
- Department of Chemistry, St. John's College, Tirunelveli, 627002, Tamilnadu, India
| |
Collapse
|
4
|
Sooryakala K, Ramalingam S, Periandy S, Aarthi R. NLO evaluation on opto-electronic application and chemical potential oscillation analysis of 2-Chloro-4-nitro-N-methylaniline crystal using crystallographic, spectroscopic and theoretical tools. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|