1
|
Bashal AH, Dhahri J, Dhahri K, Khalil KD. Deep insight into physical properties of carboxymethyl cellulose-barium oxide nanocomposites. Int J Biol Macromol 2024; 269:131935. [PMID: 38723542 DOI: 10.1016/j.ijbiomac.2024.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Nanocomposites, blending the unique properties of inorganic nanoparticles with polymers, are gaining momentum in various industries. This study delves into the synthesis and characterization of barium oxide (BaO)-doped carboxymethyl cellulose (CMC) nanocomposites, focusing on their structural, optical, electrical, and dielectric properties. Using an in-situ polymerization method, CMC films were doped with 5 % and 10 % BaO nanoparticles. X-ray diffraction analysis revealed that the doped samples exhibited enhanced crystallinity compared to pure CMC, with crystallinity percentages measured at 37.95 % and 28.86 % for 5 % and 10 % BaO, respectively, indicating the successful incorporation of BaO. Scanning electron microscopy illustrated the distribution of BaO nanoparticles, showing spherical agglomerations on the film surface. SEM analysis reveals emergence of spherical agglomerations and bright spots on nanocomposite film surface upon BaO introduction, indicating BaO nanoparticles presence. Further, the BaO nanoparticles act as catalytic and nucleating agents, influencing crystalline structure nucleation and growth, potentially enhancing film homogeneity and structural integrity. In addition, UV-visible spectroscopy elucidated the optical properties, indicating a shift in the bandgap from indirect to direct with BaO addition. The bandgap values decrease upon the addition of BaO, indicating a transition from an amorphous to a nanocrystalline structure, with respective reduction percentages of 22.73 % and 10.71 % for the 5%BaO/CMC and 10 %BaO/CMC samples compared to CMC. Electrical conductivity measurements showed enhanced conductivity in 10 % BaO/CMC due to improved charge carrier mobility, supported by dielectric studies demonstrating increased dielectric. The introduction of 5 % and 10 % BaO resulted in reductions of approximately 62.06 % and 65.77 %, respectively, compared to the pure CMC sample. This decrease in dielectric loss indicates an enhancement in the electrical properties of the nanocomposites. This comprehensive investigation could give further insights into the different properties of BaO-doped CMC nanocomposites, offering insights into their potential applications in various fields such as electronics, energy storage, and optoelectronics.
Collapse
Affiliation(s)
- Ali H Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia.
| | - Ja Dhahri
- Laboratory of Physical Chemistry of Materials, Department of Physics, Faculty of Sciences of Monastir, University of Monastir, 5019, Tunisia
| | - Khaled Dhahri
- Department of Physics, Faculty of Science, Taibah University-, Yanbu Branch, Saudi Arabia
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| |
Collapse
|
2
|
Al-Hammadi AH, Alnehia A, Al-Sharabi A, Alnahari H, Al-Odayni AB. Synthesis of trimetallic oxide (Fe 2O 3-MgO-CuO) nanocomposites and evaluation of their structural and optical properties. Sci Rep 2023; 13:12927. [PMID: 37558688 PMCID: PMC10412638 DOI: 10.1038/s41598-023-39845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
In this paper, tri-phase Fe2O3-MgO-CuO nanocomposites (NCs) and pure CuO, Fe2O3 and MgO nanoparticles (NPs) were prepared using sol-gel technique. The physical properties of the prepared products were examined using SEM, XRD, and UV-visible. The XRD data indicated the formation of pure CuO, Fe2O3 and MgO NPs, as well as nanocomposite formation with Fe2O3 (cubic), MgO (cubic), and CuO (monoclinic). The crystallite size of all the prepared samples was calculated via Scherrer's formula. The energy bandgap of CuO, Fe2O3 and MgO and Fe2O3-MgO-CuO NCs were computed from UV-visible spectroscopy as following 2.13, 2.29, 5.43 and 2.96 eV, respectively. The results showed that Fe2O3-MgO-CuO NCs is an alternative material for a wide range of applications as optoelectronics devices due to their outstanding properties.
Collapse
Affiliation(s)
- A H Al-Hammadi
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, 12081, Yemen
| | - Adnan Alnehia
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, 12081, Yemen
- Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar, 87246, Yemen
| | - Annas Al-Sharabi
- Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar, 87246, Yemen
| | - Hisham Alnahari
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, 12081, Yemen.
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, 11545, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Alharbi KH, Alharbi W, El-Morsy MA, Farea MO, Menazea AA. Optical, Thermal, and Electrical Characterization of Polyvinyl Pyrrolidone/Carboxymethyl Cellulose Blend Scattered by Tungsten-Trioxide Nanoparticles. Polymers (Basel) 2023; 15:1223. [PMID: 36904463 PMCID: PMC10007056 DOI: 10.3390/polym15051223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The polymeric material polyvinyl pyrrolidine/carboxymethyl cellulose (PVP/CMC) was mixed with different quantities of tungsten-trioxide nanoparticles (WO3 NPs). The samples were created using the casting method and Pulsed Laser Ablation (PLA). The manufactured samples were analyzed by utilizing various methods. The halo peak of the PVP/CMC was located at 19.65°, confirming its semi-crystalline nature, as shown in the XRD analysis. FT-IR spectra of pure PVP/CMC composite and PVP/CMC composite incorporated with various contents of WO3 obtained a shift in band locations and change in intensity. Optical band gap was calculated via UV-Vis spectra, which decreased when increasing the laser-ablation time. Thermogravimetric analyses (TGA) curves showed that samples' thermal stability had improved. The frequency-dependent composite films were used to determine AC conductivity of the generated films. When increasing the content of tungsten-trioxide nanoparticles, both (ε') and (ε'') increased. The incorporation of tungsten trioxide enhanced the ionic conductivity of PVP/CMC/WO3 nano-composite to a maximum of 10-8 S/c. It is expected that these studies will have a significant impact on several utilizations, such as energy storage, polymer organic semiconductors, and polymer solar cells.
Collapse
Affiliation(s)
- Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Walaa Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - M. A. El-Morsy
- College of Science and Humanities in Al-Kharj, Physics Department, Plasma Technology and Material Science Unit, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Physics Department, Faculty of Science, University of Damietta, New Damietta 34517, Egypt
| | - M. O. Farea
- Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - A. A. Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Center, Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Awramiuk P, Sadowska K, Wiater J, Sajewicz D, Kochanowicz M, Walendziuk W, Żmojda JM. Development of an Active Optical Lens for Arc Flashing Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:2629. [PMID: 36904832 PMCID: PMC10007226 DOI: 10.3390/s23052629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
This paper contains the design of active optical lenses used for the detection of arc flashing emissions. The phenomenon of an arc flashing emission and its characteristics were contemplated. Methods of preventing these emissions in electric power systems were discussed as well. The article also includes a comparison of commercially available detectors. An analysis of the material properties of fluorescent optical fiber UV-VIS-detecting sensors constitutes a major part of the paper. The main purpose of the work was to make an active lens using photoluminescent materials, which can convert ultraviolet radiation into visible light. As part of the work, active lenses with materials such as Poly(methyl 2-methylpropenoate) (PMMA) and phosphate glass doped with lanthanides, such as terbium (Tb3+) and europium (Eu3+) ions, were analyzed. These lenses were used to make optical sensors, which were supported by commercially available sensors in their construction.
Collapse
|
5
|
Alghamdi HM, Abutalib M, Mannaa MA, Nur O, Abdelrazek E, Rajeh A. Modification and development of high bioactivities and environmentally safe polymer nanocomposites doped by Ni/ZnO nanohybrid for food packaging applications. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 19:3421-3432. [DOI: 10.1016/j.jmrt.2022.06.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
6
|
Yuan M, Huang D, Zhao Y. Development of Synthesis and Application of High Molecular Weight Poly(Methyl Methacrylate). Polymers (Basel) 2022; 14:polym14132632. [PMID: 35808676 PMCID: PMC9269080 DOI: 10.3390/polym14132632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in aviation, architecture, medical treatment, optical instruments and other fields because of its good transparency, chemical stability and electrical insulation. However, the application of PMMA largely depends on its physical properties. Mechanical properties such as tensile strength, fracture surface energy, shear modulus and Young’s modulus are increased with the increase in molecular weight. Consequently, it is of great significance to synthesize high molecular weight PMMA. In this article, we review the application of conventional free radical polymerization, atom transfer radical polymerization (ATRP) and coordination polymerization for preparing high molecular weight PMMA. The mechanisms of these polymerizations are discussed. In addition, applications of PMMA are also summarized.
Collapse
Affiliation(s)
- Ming Yuan
- Correspondence: ; Tel.: +86-0578-2271-458
| | | | | |
Collapse
|
7
|
Belkheir M, Rouissat M, Mokaddem A, Doumi B, Boutaous A. Studying the effect of polymethyl methacrylate polymer opticals fibers (POFs) on the performance of composite materials based on the polyether ether ketone (PEEK) polymer matrix. EMERGENT MATERIALS 2022; 5:2075-2085. [PMID: 35692304 PMCID: PMC9171084 DOI: 10.1007/s42247-022-00392-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
More recently, various techniques have been implemented for the sensors manufacturing purpose, such as fiber Bragg gratings fibers (FBG) that allows variable core refractive index suitable for a large scale of measurements types, fiber optic evanescent waves (FOEW) for water parameters measurement, microstructured and crystal photonic optical fibers, polymers optical fiber (POFs), and so on. In this perspective, the objective of this work is to study the reliability and the origin of the resistance of each fiber-matrix interface of the composite materials PMMA/PEEK, Topas/PEEK, and Topas-Zeonex/PEEK. The genetic simulation is based on the probabilistic approach of Weibull to calculate the damage at the interface by crossing the two damages of the matrix and the fiber respectively. The results show that the PMMA/PEEK composite is the most resistant to the mechanical stresses applied compared to those Topas/PEEK and Topas-Zeonex/PEEK; these results were confirmed by the level of damage to the interface observed for the studied materials. The performed calculations are in good agreement with the analytical results of Cox, where he demonstrated that Young's modulus of fibers have an important influence on the shear strength of the fiber-matrix interface of composite materials. Based on the obtained results, the present study gives the opportunity for the proposed materials (PMMA/PEEK and Zeonex/PEEK) to be as potential candidates for the smart digital applications and telecoms aims.
Collapse
Affiliation(s)
- Mohammed Belkheir
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Mehdi Rouissat
- Laboratoire STIC (Université de Tlemcen), Tlemce, Algeria
- Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Allel Mokaddem
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Bendouma Doumi
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
- Département Technologie Des Matériaux, Faculté de Physique, Université des Sciences et de la Technologie, USTO-MB, Oran, Algeria
| | - Ahmed Boutaous
- Faculty of Sciences, Department of Physics, Dr Tahar Moulay University of Saïda, 20000 Saïda, Algeria
| |
Collapse
|
8
|
Alnehia A, Al-Hammadi A, Al-Sharabi A, Alnahari H. Optical, structural and morphological properties of ZnO and Fe+3 doped ZnO-NPs prepared by Foeniculum vulgare extract as capping agent for optoelectronic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Regression Analysis of the Dielectric and Morphological Properties for Porous Nanohydroxyapatite/Starch Composites: A Correlative Study. Int J Mol Sci 2022; 23:ijms23105695. [PMID: 35628505 PMCID: PMC9146691 DOI: 10.3390/ijms23105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz−12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.
Collapse
|
10
|
Improved Physical, thermal, and conductivity strength of ternary nanocomposite films of PVDF/PMMA/GO NPs for electrical applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Asture A, Rawat V, Srivastava C, Vaya D. Investigation of properties and applications of ZnO polymer nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04243-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Alghamdi HM, Rajeh A. Synthesis of CoFe2O4/MWCNTs Nanohybrid and its Effect on the Optical, Thermal, and Conductivity of PVA/CMC Composite as an Application in Electrochemical Devices. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02322-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Influence of TiO2 concentration on the characteristics of ZnO nanoparticles fabricated via sonication assisted with gelatin. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Structural, thermal and electrical properties of composites electrolytes (1−x) CsH2PO4/x ZrO2 (0 ≤ x ≤ 0.4) for fuel cell with advanced electrode. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04097-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractComposites proton conducting material based on cesium dihydrogen phosphate (CDP) doped with zirconium oxide (1−x) CsH2PO4/x ZrO2 were synthesized with different concentration having in the range such as x = 0.1, 0.2, 0.3 and 0.4 by ball milling method. The prepared solid acid composites were dried at 150 °C for 6 h. Structural and thermal characterization of solid acid composite proton electrolytes were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, and Raman spectroscopy respectively. Phase transition of the prepared materials was carried out by using differential scanning calorimetry and conductivity was measured by LC Impedance meter in the range 1 Hz to 400 kHz. The ionic conductivity of ZrO2 doped CsH2PO4 (CDP) was increased up to 1.3 × 10–2 S cm−1 at the 280 °C under environment atmospheric humidification which showed high stability as compared to pure CsH2PO4 (CDP). This obtaining result would be useful for establishing and design the next generation fuel cell.
Collapse
|