1
|
Arojojoye AS, Awuah SG. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord Chem Rev 2025; 522:216208. [PMID: 39552640 PMCID: PMC11563041 DOI: 10.1016/j.ccr.2024.216208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metallo-phosphines are ubiquitous in organometallic chemistry with widespread applications as catalysts in various chemical transformations, precursors for organic electronics, and chemotherapeutic agents or chemical probes. Here, we provide a comprehensive review of the exploration of the current biological applications of Au complexes bearing phosphine donor ligands. The goal is to deepen our understanding of the synthetic utility and reactivity of Au-phosphine complexes to provide insights that could lead to the design of new molecules and enhance the cross-application or repurposing of these complexes.
Collapse
Affiliation(s)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536
- Markey Cancer Centre, University of Kentucky, Lexington KY, 40536
- University of Kentucky Bioelectronics and Nanomedicine Research Center, Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Synthesis, in vitro anticancer activity and reactions with biomolecule of gold(I)-NHC carbene complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Abogosh AK, Alghanem MK, Ahmad S, Al-Asmari A, As Sobeai HM, Sulaiman AAA, Fettouhi M, Popoola SA, Alhoshani A, Isab AA. A novel cyclic dinuclear gold(I) complex induces anticancer activity via an oxidative stress-mediated intrinsic apoptotic pathway in MDA-MB-231 cancer cells. Dalton Trans 2022; 51:2760-2769. [PMID: 35083998 DOI: 10.1039/d1dt03546k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new dinuclear cyclic gold(I) complex [Au2(DCyPA)2](PF6)2, 1, based on bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA) has been synthesized and characterized by elemental analysis, IR and NMR spectroscopy, and X-ray crystallography. In the dinuclear complex cation [Au2(DCyPA)2]2+, the two gold(I) ions are bridged by the ligand bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA) giving rise to a 16-membered ring centrosymmetric metallacycle. The cytotoxicity of the complex was evaluated against the triple-negative human breast cancer cells MDA-MB-231. In order to understand the mechanism of the cytotoxic behavior, a variety of assays, including Annexin V-FITC/Propidium iodide double staining, ROS production, and mitochondrial membrane potential and migration assays were carried out. The results indicated that complex 1 induced cytotoxicity via an oxidative stress-mediated intrinsic apoptotic pathway in MDA-MB-231 cancer cells.
Collapse
Affiliation(s)
- Ahmed K Abogosh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Meshal K Alghanem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdullah Al-Asmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam A A Sulaiman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mohammed Fettouhi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Saheed A Popoola
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Sulaiman AAA, Ahmad S, Mujahid Hashimi S, Alqosaibi AI, Peedikakkal AMP, Alhoshani A, Alsaleh NB, Isab AA. Novel dinuclear gold( i) complexes containing bis(diphenylphosphano)alkanes and (biphenyl-2-yl)(di- tert-butyl)phosphane: synthesis, structural characterization and anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj01680j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel dinuclear phosphanegold(I) complexes containing bis(diphenylphosphano)alkanes and related phosphano alkanes were synthesized and characterized by elemental analysis, FTIR, NMR spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Adam A. A. Sulaiman
- Core Research Facilities (CRF), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Saeed Mujahid Hashimi
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands, QLD, Australia
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | | | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Sulaiman AA, Alhoshani A, Ahmad S, Peedikakkal AMP, Abogosh AK, Alghanem M, Mahmoud MA, Alanazi WA, Alasmael N, Monim-ul-Mehboob M, Isab AA. Synthesis, anticancer activity and apoptosis induction of gold(I) complexes containing tris(o-methoxyphenyl)phosphane. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Wysokiński R, Zierkiewicz W, Michalczyk M, Scheiner S. Ability of Lewis Acids with Shallow σ-Holes to Engage in Chalcogen Bonds in Different Environments. Molecules 2021; 26:molecules26216394. [PMID: 34770803 PMCID: PMC8586936 DOI: 10.3390/molecules26216394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Molecules of the type XYT = Ch (T = C, Si, Ge; Ch = S, Se; X,Y = H, CH3, Cl, Br, I) contain a σ-hole along the T = Ch bond extension. This hole can engage with the N lone pair of NCH and NCCH3 so as to form a chalcogen bond. In the case of T = C, these bonds are rather weak, less than 3 kcal/mol, and are slightly weakened in acetone or water. They owe their stability to attractive electrostatic energy, supplemented by dispersion, and a much smaller polarization term. Immersion in solvent reverses the electrostatic interaction to repulsive, while amplifying the polarization energy. The σ-holes are smaller for T = Si and Ge, even negative in many cases. These Lewis acids can nonetheless engage in a weak chalcogen bond. This bond owes its stability to dispersion in the gas phase, but it is polarization that dominates in solution.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (R.W.); (W.Z.); (S.S.)
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (R.W.); (W.Z.); (S.S.)
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
- Correspondence: (R.W.); (W.Z.); (S.S.)
| |
Collapse
|
7
|
Synthesis, characterization, and miRNA-mediated PI3K suppressing activity of novel cisplatin-derived complexes of selenones. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
8
|
Fonseca C, Fraqueza G, Carabineiro SAC, Aureliano M. The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. INORGANICS 2020; 8:49. [DOI: 10.3390/inorganics8090049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapeutic applications of gold are well-known for many centuries. The most used gold compounds contain Au(I). Herein, we report, for the first time, the ability of four Au(I) and Au(III) complexes, namely dichloro (2-pyridinecarboxylate) Au(III) (abbreviated as 1), chlorotrimethylphosphine Au(I) (2), 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene Au(I) chloride (3), and chlorotriphenylphosphine Au(I) (4), to affect the sarcoplasmic reticulum (SR) Ca2+-ATPase activity. The tested gold compounds strongly inhibit the Ca2+-ATPase activity with different effects, being Au(I) compounds 2 and 4 the strongest, with half maximal inhibitory concentration (IC50) values of 0.8 and 0.9 µM, respectively. For Au(III) compound 1 and Au(I) compound 3, higher IC50 values are found (4.5 µM and 16.3 µM, respectively). The type of enzymatic inhibition is also different, with gold compounds 1 and 2 showing a non-competitive inhibition regarding the native substrate MgATP, whereas for Au compounds 3 and 4, a mixed type of inhibition is observed. Our data reveal, for the first time, Au(I) compounds with powerful inhibitory capacity towards SR Ca2+ATPase function. These results also show, unprecedently, that Au (III) and Au(I) compounds can act as P-type ATPase inhibitors, unveiling a potential application of these complexes.
Collapse
Affiliation(s)
| | - Gil Fraqueza
- CCMar, ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | | |
Collapse
|