1
|
Elebiju OF, Ajani OO, Oduselu GO, Ogunnupebi TA, Adebiyi E. Recent advances in functionalized quinoline scaffolds and hybrids-Exceptional pharmacophore in therapeutic medicine. Front Chem 2023; 10:1074331. [PMID: 36688036 PMCID: PMC9859673 DOI: 10.3389/fchem.2022.1074331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Quinoline is one of the most common nitrogen-containing heterocycles owing to its fascinating pharmacological properties and synthetic value in organic and pharmaceutical chemistry. Functionalization of this moiety at different positions has allowed for varying pharmacological activities of its derivative. Several publications over the last few decades have specified various methods of synthesis. This includes classical methods of synthesizing the primary quinoline derivatives and efficient methods that reduce reaction time with increased yield employing procedures that fulfill one of the twelve green chemistry principles, "safer solvent". The metal nanoparticle-catalyzed reaction also serves as a potent and effective technique for the synthesis of quinoline with excellent atom efficiency. The primary focus of this review is to highlight the routes to synthesizing functionalized quinoline derivatives, including hybrids that have moieties with predetermined activities bound to the quinoline moiety which are of interest in synthesizing drug candidates with dual modes of action, overcoming toxicity, and resistance amongst others. This was achieved using updated literature, stating the biological activities and mechanisms through which these compounds administer relief. The ADMET studies and Structure-Activity Relationship (SAR) of novel derivatives were also highlighted to explore the drug-likeness of the quinoline-hybrids and the influence of substituent characteristics and position on the biological activity of the compounds.
Collapse
Affiliation(s)
- Oluwadunni F. Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Temitope A. Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Computer and Information Science, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Ullah Z, Sonawane PM, Mary YS, Mary YS, Yohannan Panicker C, Churchill DG. A foundational theoreticalAl 12E 12(E = N, P) adsorption and quinolone docking study: cage–quinolone pairs, optics and possible therapeutic and diagnostic applications. J Biomol Struct Dyn 2022; 41:3630-3646. [PMID: 35380095 DOI: 10.1080/07391102.2022.2053742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This combined Al12E12 (E = N, P) surface adsorption and docking study describes the new possibility of prospective potential probing(photophysical/optical) and therapy(medicinal/biochemical) with these adsorbent conjugates. DFT investigations were undertaken herein to help generate geometrical models and better understand the possible favorable adsorption energetics. We attempt to explain their adsorption behaviors and docking involving SARS-CoV-2 viruses (PDB)to assess their possible pharmaceutical potential against the pandemic virus (COVID-19). The adsorption behavior of 8-hydroxy-2-methylquinoline (MQ) and its halogenated derivatives, 5,7-diiodo-8-hydroxy-2-methylquinoline (MQI), 5,7-dichloro-8-hydroxy-2-methylquinoline (MQCl), and 5,7-dibromo-8-hydroxy-2-methylquinoline (MQBr), with aluminum-nitrogen (AlN), and aluminum-phosphorous (AlP) fullerene-like nanocages is reported. A decrease in the hardness of the nanoclusters when adsorbed with drug molecules resulted in an incrementally improved chemical softness (see e.g., Hard-Soft Acid Base theory) indicating that reactivity of the drug molecule in the resulting complex increases upon cluster chemical adsorption. The energy gap is found to be maximized for AlN-MQ and minimized for AlP-MQI; the reduced density gradient (RDG) iso-surfaces and AIM studies also corroborated this. Therefore, these two were found, respectively, to be the least and most electrically conductive of the species under study. We selected a simple medicinal building block (chelator)in addition to selecting the cluster based on previous literature reports. Important parameters such as gap energies and global indices were determined. We assessed NLO properties. The SARS-CoV-2 virus PDB docking data for 6VW1, 6VYO, 6WKQ, 7AD1, 7AOL, 7B3C, were enlisted as ligand targets for studies of docking (PatchDock Server) using the requisite PDB geometries (For the structure of 6VW1, kindly see reference, 2020; For the structure of 6VYO kindly see reference, 2020; For the structure of 6WKQ kindly see reference, 2020; For the structure of 7AD1 kindly see reference, 2021; For the structure of 7AOL kindly see reference, 2021; For the structure of 7B3C kindly see reference, 2021). Such findings indicate that the AlN-drug conjugation have inhibitory effect against these selected receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Energy, Environment, Water and Sustainability (EEWS) Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| | - Prasad M. Sonawane
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Chemistry & Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | | | | | | | - David G. Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Therapeutic Bioengineering Section, KAIST Institute for Health Science and Technology (KIHST), Daejeon, Republic of Korea
| |
Collapse
|
3
|
Angajala G, Aruna V, Pavan P, Guruprasad Reddy P. Biocatalytic one pot three component approach: Facile synthesis, characterization, molecular modelling and hypoglycemic studies of new thiazolidinedione festooned quinoline analogues catalyzed by alkaline protease from Aspergillus niger. Bioorg Chem 2021; 119:105533. [PMID: 34902647 DOI: 10.1016/j.bioorg.2021.105533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/01/2022]
Abstract
A novel ANAP (Aspergillus niger from alkaline protease) catalyzed one pot three component approach in the synthesis of new thiazolidinedione festooned quinoline analogues via Knoevenagel condensation and N-alkylation have been reported. The catalytic effect of enzyme was monitored and optimized by adjusting various parameters including catalyst concentration, choice of solvent and temperature. The isolated alkaline protease exhibits favorable features for the reaction response such as the shorter reaction time, simple work-up procedure, clean reaction profiles and excellent product yields through reusability of the catalyst upto five cycles. In silico molecular docking simulations were carried out to find out the effective binding affinity of the synthesized quinoline analogues 4(a-i) towards PPARγ protein (Id-2XKW). In vitro α-amylase and α-glucosidase assays were performed for hypoglycemic activity evaluation. In vivo hypoglycemic studies carried out on streptozotocin (SZT) induced diabetic male albino rats have shown that compounds 4e and 4f significantly reduced blood glucose levels with percentage reduction of 43.7 ± 0.91 and 45.6 ± 0.28 at a concentration of 50 mg/kg body wt. The results obtained from molecular docking simulations and in vitro enzyme assays are in consistent with in-vivo studies which clearly demonstrated that out of the synthesized quinoline analogues, compounds 4e and 4f possess promising hypoglycemic activity which was on par to that of standards pioglitazone and rosiglitazone respectively.
Collapse
Affiliation(s)
- Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand nagar, Krishnankoil 626126, Tamilnadu, India.
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand nagar, Krishnankoil 626126, Tamilnadu, India
| | - Pasupala Pavan
- Department of Humanities and Basic Sciences, G. Pulla Reddy Engineering College, Kurnool 518007, Andhra Pradesh, India
| | - Pulikanti Guruprasad Reddy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Wali S, Atia-Tul-Wahab, Ullah S, Khan MA, Hussain S, Shaikh M, Atta-Ur-Rahman, Choudhary MI. Synthesis of new clioquinol derivatives as potent α-glucosidase inhibitors; molecular docking, kinetic and structure-activity relationship studies. Bioorg Chem 2021; 119:105506. [PMID: 34896920 DOI: 10.1016/j.bioorg.2021.105506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with increasing prevalence and long-term complications. The aim of this study was to identify α-glucosidase inhibitory compounds with potential anti-hyperglycemic activity. For this purpose, a series of new clioquinol derivatives 2a-11a was synthesized, and characterized by various spectroscopic techniques. The enzyme inhibitory activities of the resulting derivatives were assessed using an in-vitro mechanism-based assay. All the tested compounds 2a-11a of the series showed a significant α-glucosidase inhibition with IC50 values 43.86-325.81 µM, as compared to the standard drug acarbose 1C50: 875.75 ± 2.08 µM. Among them, compounds 4a, 5a, 10a, and 11a showed IC50 values of 105.51 ± 2.41, 119.24 ± 2.37, 99.15 ± 2.06, and 43.86 ± 2.71 µM, respectively. Kinetic study of the active analogues showed competitive, non-competitive, and mixed-type inhibitions. Furthermore, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of α-glucosidase enzyme. The results indicate that these compounds have the potential to be further studied as new anti-diabetic agents.
Collapse
Affiliation(s)
- Shoukat Wali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Saeed Ullah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- Third World Center for Science and Technology International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahid Hussain
- Toronto General Hospital Research Institute (TGHRI), Toronto M5G 2C4, Canada
| | - Muniza Shaikh
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atta-Ur-Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| |
Collapse
|
5
|
Angajala G, Aruna V, Pavan P, Reddy PG. Ultrasound promoted montmorillonite K-10 catalyzed synthesis, characterization, molecular modelling, SAR and hypoglycemic studies of new rhodanine bejeweled acridine analogues. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Angajala G, Aruna V, Subashini R. Visible light induced nano copper catalyzed one pot synthesis of novel quinoline bejeweled thiobarbiturates as potential hypoglycemic agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gangadhara Angajala
- Department of Chemistry Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Valmiki Aruna
- Department of Chemistry Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Radhakrishnan Subashini
- Department of Chemistry Arignar Anna Government Arts College for women Walajapet, Vellore Tamilnadu India
| |
Collapse
|