1
|
Khalid M, Adnan M, Farooq M, Yoshinori Y, Park J, Ullah A, Mayakrishnan G, Kim IS. Efficient Water-Soluble Cu(II) Complex-Immobilized Electrospun Hydrophobic Polycaprolactone Nanofiber Composites for Highly Controlled and Long-Term Release. ACS OMEGA 2025; 10:12961-12971. [PMID: 40224431 PMCID: PMC11983174 DOI: 10.1021/acsomega.4c09305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Water-soluble Cu complexes offer diverse applications in the biomedical field as Cu is an essential trace element for many physiological functions, including the wound healing process. Controlled delivery of such bioactive Cu complexes to the target system is a promising approach in biomedical applications. Herein, water-soluble Cu(II)-Schiff base complex-incorporated PCL nanofiber composites (PCL@C-1%, PCL@C-3%, and PCL@C-5%) were fabricated by the electrospinning process using a green solvent, acetic acid. Physicochemical properties of the resultant composite nanofibers were investigated by FE-SEM, EDS, TEM, UV-vis, FT-IR, XRD, TGA, BET, and XPS analyses. The successful incorporation of the Cu(II) complex into the PCL nanofiber was confirmed. Water contact angle (WCA) values revealed the hydrophobic nature of the PCL-composite nanofibers, which is also quite beneficial in the wound-healing process as it can create a hydrophobic barrier to prevent extra fluid absorption. To our delight, the release behavior of Cu complexes from the composite nanofibers was found to be gradual, highly controlled, and long-term release (up to 40 days). In addition, the resultant PCL composites demonstrated excellent antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, these findings provide significant insights into these Cu complex-incorporated PCL nanofiber membranes as potential antibacterial and long-term wound dressings.
Collapse
Affiliation(s)
- Maira Khalid
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Muhammad Adnan
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Muhammad Farooq
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Yabuta Yoshinori
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Jeongjin Park
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Azeem Ullah
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
2
|
Nagaraju M, Karthik CS, Hema MK, Chethan BS, Ramalingam RJ, Karnan M, Lokanath NK. Perusal on the role of DMF solvent and hydrogen bonding in the formation of 1D polymeric chains in mixed ligand Ni(II) complex as an anticancer agent: a computational approach. J Biomol Struct Dyn 2025; 43:1259-1277. [PMID: 38095358 DOI: 10.1080/07391102.2023.2291543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 09/13/2024]
Abstract
A novel mixed ligand Ni(II) metal complex has been investigated for the modification in structural conformation, coordination bond, and noncovalent interactions. The novel Ni(II) metal complex [Ni(TFPB)2(1,10-Ph)(DMF)] has been synthesized and structurally characterized, which featured six coordination with three bidentate ligands connected through oxygen and nitrogen atoms. The single-crystal X-ray analysis showed that the compound possessed octahedral geometry and C-H…F, C-H…O, and π…π intermolecular interactions resulting in the formation of supramolecular architecture contributed significantly towards the crystal packing and molecular stability. Hirshfeld surface analysis was carried out to validate various intermolecular interactions. Further, the 3D structural topologies were visualized using energy framework analysis. To explore the coordination stability and chemically reactive parameters of the novel Ni(II) complex, the electronic structure was optimized using density functional theory calculations. The natural bond orbital analysis revealed the various hyperconjugative interactions exhibited by the complex. In addition, the complex was screened for in silico studies to understand the antitumoricidal potential of the novel Ni(II) complex. Molecular docking studies were also performed against three targeted proteins (PDB ID: 6H0W, 6NE5, and 6E91) to investigate the binding mode and protein-ligand interactions. These results are further analyzed by molecular dynamic simulation to confirm the best possible interactions and stability in the active site of the targeted proteins with a simulation period of 100 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maithra Nagaraju
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - C S Karthik
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru, Karnataka, India
| | - M K Hema
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - B S Chethan
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - R Jothi Ramalingam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muthusamy Karnan
- Grassland and Forage division, National Institute of Animal Science, Rural Development Administration, Cheonan-si, South Korea
| | - N K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
3
|
Islam MT, Bitu NA, Chaki BM, Hossain MJ, Asraf MA, Hossen MF, Kudrat-E-Zahan M, Latif MA. Water-soluble Schiff base ligands and metal complexes: an overview considering green solvent. RSC Adv 2024; 14:25256-25272. [PMID: 39139233 PMCID: PMC11320196 DOI: 10.1039/d4ra04310c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
The water-soluble metal complexes with Schiff base (SB) ligands are of great interest to green chemistry researchers due to their stability, cost-effectiveness, eco-friendly, electron-donating ability, and various applications. They have high potential to express their biological activity including anti-inflammatory, anticancer, antibacterial, antifungal, antioxidant, and DNA binding and cleavage. In the recent era, transition metal complexes have played a significant role in different processes such as hydrogenation, carbonylation, oxidation, reduction, epoxidation, hydrolysis, decomposition, and polymerization reactions in industry. However, their limited aqueous solubility may be the major limitation to their potential catalytic, industrial, and clinical applications. In industrial catalytic processes, it has been proven that water can be used as a solvent to minimize the environmental effect of different reactions as well as simple and complete separation. Water is a green solvent, flexible, non-toxic, safe, readily available, environmentally harmless, and inexpensive. Attaching different substituents on Schiff bases enhances the water solubility and catalytic activity. Studies on water-soluble SB complexes will explore these aspects and their prospects for the future evolution of their diverse applications.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Nur Amin Bitu
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | | | - Md Jakir Hossain
- Department of Chemistry, Begum Rokeya University Rangpur Bangladesh
| | - Md Ali Asraf
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Faruk Hossen
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Kudrat-E-Zahan
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Abdul Latif
- Department of Chemistry, Begum Rokeya University Rangpur Bangladesh
| |
Collapse
|
4
|
Zhuang Y, Zhu L, Chen X, Chen J, Ye Z, Kang J, Wang X, Han Z. Synthesis of carbon dot based Schiff bases and selective anticancer activity in glioma cells. RSC Adv 2024; 14:1952-1961. [PMID: 38192314 PMCID: PMC10772990 DOI: 10.1039/d3ra06411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Schiff bases have remarkable anticancer activity and are used for glioma therapy. However, the poor water solubility/dispersibility limits their therapeutic potential in biological systems. To address this issue, carbon dots (CDs) have been utilized to enhance the dispersibility in water and biological efficacy of Schiff bases. The amino groups on the surface of CDs were conjugated effectively with the aldehyde group of terephthalaldehyde to form novel CD-based Schiff bases (CDSBs). The results of the MTT assays demonstrate that CDSBs have significant anticancer activity in glioma GL261 cells and U251 cells, with IC50 values of 17.9 μg mL-1 and 14.9 μg mL-1, respectively. CDSBs have also been found to have good biocompatibility with normal glial cells. The production of reactive oxygen species (ROS) in GL261 glioma cells showed that CDSBs, at a concentration of 44 μg mL-1, resulted in approximately 13 times higher intracellular ROS production than in the control group. These experiments offer evidence that CDSBs induce mitochondrial damage, leading to a reduction in mitochondrial membrane potential in GL261 cells. In particular, in this work, CDs serve not as carriers, but as an integral part of the anticancer drugs, which can expand the role of CDs in cancer treatment.
Collapse
Affiliation(s)
- Yafeng Zhuang
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Xiaoping Chen
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Jing Chen
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Jie Kang
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Zhizhong Han
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| |
Collapse
|
5
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
6
|
Alka, Gautam S, Kumar R, Singh P, Gandhi N, Jain P. Pharmacological aspects of Co(II), Ni(II) and Cu(II) schiff base complexes: An insight. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
7
|
Shahabadi N, Abdoli Z, Mardani Z, Hadidi S, Shiri F, Soltani L. DNA interaction studies of a cobalt(III) complex containing β-amino alcohol ligand by spectroscopic and molecular docking methods. J Biomol Struct Dyn 2023; 41:12545-12551. [PMID: 36650998 DOI: 10.1080/07391102.2023.2166994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
In the present research, the feasibility of a Cobalt(III) complex containing β-amino alcohol ligands for affinity with the target calf thymus DNA is demonstrated. In the title complex, [Co(C11H15N2O2)2]Cl, the Co(III) atom is six-coordinated with four N atoms and two O atoms from (2-[(E)-({2-[(2-Hydroxyethyl) amino]ethyl}imino)methyl]phenol) ligand (L). To investigate the molecular interaction between the synthesized complex and DNA, some multi-spectroscopic approaches associated with molecular docking were employed in the physiological buffer (pH 7.4). The results indicated that the Co(III) complex proved to be a minor groove binder with a preference for the A-T region, which was substantiated by displacement studies with Hoechst33258 and Methylene blue (MB) as minor groove binder and intercalator. In addition, the results of the molecular docking study revealed that the Co(III) complex approached the gap between the DNA minor grooves near the spot where the Hoechst was. Furthermore, the results of the cytotoxicity and apoptosis tests for the MCF-7 cell line were also indicative of the positive effects of the complex on controlling the growth and viability of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Abdoli
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Kumar S, Devi J, Dubey A, Kumar D, Jindal DK, Asija S, Sharma A. Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base ligands: synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Muthukkumar M, Karthikeyan A, Kamalesu S, Kadri M, Jennifer SJ, Razak IA, Nehru S. Synthesis, crystal structure, optical and DFT studies of a novel Co(II) complex with the mixed ligands 3-bromothiophene-2-carboxylate and 2-aminopyridine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
New Schiff base ligand and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes: spectral investigation, biological applications, and semiconducting properties. Sci Rep 2022; 12:17942. [PMID: 36289280 PMCID: PMC9606359 DOI: 10.1038/s41598-022-22713-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
New Schiff base ligand, derived from antiviral valacyclovir, and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes have been synthesized. By using a variety of analytical and spectroscopic techniques, the type of bonding between the ligand and the metal ions in the recently formed complexes was clarified. The Schiff base ligand act as a bidentate and coordinated with the metal ions through the azomethine-N and the phenolic-O centers, in a mono-deprotonated form. Except for the Zn(II) complex, which displayed a tetrahedral geometry, all complexes displayed octahedral geometry. The TGA findings supported that the stability and decomposition properties of the metal complexes were entirely distinct from one another. The thermogram showed decomposition of all investigated metal complexes above 200 °C in three, four or five steps, and indicated the high thermal stability of these complexes. According to XRD patterns, the particles of these complexes were located at the nanoscale. Moreover, for all the samples analyzed, the TEM images showed uniform and homogeneous surface morphology. The biological activity revealing the high efficiencies of the screened complexes as antibacterial and antitumor agents. The antimicrobial activity of the ligand and its complexes was examined against a variety of pathogenic bacteria and fungi including Escherichia coli, Staphylococcus aureus and Candida albicans. The data obtained revealed that the metal ion in the complexes enhanced the antimicrobial activity compared to the free ligand. The high efficiencies toward S. aureus, E. coli, and C. albicans appeared by Cu(II) complex 23, Ni(II) complex 20, and Ni(II) complex 19, respectively. The antitumor activity of the ligand and its complexes was tested against Hepatocellular carcinoma cell line (HepG-2 cells), the residue 28 which produced after heating the Cu(II) complex 25 at 200 °C for 1 h, exhibited strong inhibition of HepG-2 cell growth. The results of the DNA cleavage investigation demonstrated the ability of investigated Cu(II) complex to degrade DNA. The docking findings showed strong interactions of both the ligand and its examined Cu(II) complex, revealing their ability to cleavage DNA and their potent inhibitory effects on tumor cells. The electrical conductivity study confirmed that the ligand and its investigated complexes had semiconducting properties.
Collapse
|
11
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
12
|
Jain S, Rana M, Sultana R, Mehandi R, Rahisuddin. Schiff Base Metal Complexes as Antimicrobial and Anticancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shruti Jain
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Hu J, Luo Y, Hou M, Qi JJ, Liang LL, Li WG. Synthesis, Structure, and Anticancer Studies of Cu (II) and Ni (II) Complexes Based on (5‐Chlorosalicylaldehyde)‐4‐Aminoantipyrine Schiff‐base. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Hu
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| | - Yun Luo
- School of Basic Courses Bengbu Medical College Bengbu China
| | - Min Hou
- School of Basic Courses Bengbu Medical College Bengbu China
| | - Jia Jia Qi
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| | - Li Li Liang
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| | - Wen Ge Li
- School of Basic Courses Bengbu Medical College Bengbu China
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu China
| |
Collapse
|
14
|
Abdel Rahman LH, Al-Zaqri N, Abdelghani AA, Abdalla EM. Physicochemical, in vitro therapeutic activity, DNA-binding, and in silico molecular docking studies of samarium(III) complexes bearing N,O-chelated Schiff base ligands. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2095267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani A. Abdelghani
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward, Canada
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, Alkharga, Egypt
| |
Collapse
|
15
|
Mahadevi P, Sumathi S, Metha A, Singh J. Synthesis, spectral, antioxidant, in vitro cytotoxicity activity and thermal analysis of Schiff base metal complexes with 2,2′-Bipyridine-4,4′-dicarboxylic acid as co-ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Priya J, Madheswari D. Biomolecular docking interactions, cytotoxicity and antioxidant property evaluations with novel Mn(II), Ni(II), Cd(II) and Pb(II) Schiff base ligand complexes: Synthesis and characterization. J Biosci 2022. [DOI: 10.1007/s12038-022-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Abdel-Rahman LH, Shaker S. Adam M, Al-Zaqri N, Shehata MR, El-Sayed Ahmed H, Mohamed SK. Synthesis, characterization, biological and docking studies of ZrO(II), VO(II) and Zn(II) complexes of a halogenated tetra-dentate Schiff base. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Omar (Al-Ahdal) ZT, Jadhav S, Pathrikar R, Shejul S, Rai M. Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Shivaji Jadhav
- Department of Chemistry, Tarai College Arts and Science, Aurangabad, Maharashtra, India
| | - Rashmi Pathrikar
- Department of Chemistry, Rajshri Shahu College, Aurangabad, Maharashtra, India
| | - Sumit Shejul
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| | - Megha Rai
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| |
Collapse
|
19
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Soleymani-Babadi S, Beheshti A, Nasiri E, Bahrani-Pour M, Motamedi H, Mayer P. Simple synthesis of novel magnetic silver polymer nanocomposites with a good separation capacity and intrinsic antibacterial activities with high performance. Dalton Trans 2021; 50:15538-15550. [PMID: 34651632 DOI: 10.1039/d1dt00176k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two new coordination polymers namely, [(AgCN)4LS]n (1) and [(AgCN)3LN]n (2), were successfully synthesized by the reaction of AgNO3 and cyanide as a co-anion with LS[1,1'-(hexane-1,4-diyl)bis(3-methylimidazoline-2-thione] and LN[1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazole)propane] ligands in order to use them for the preparation of magnetic nanocomposites with MnFe2O4 nanoparticles by an efficient and facile method. They were then well characterized via numerous techniques, including elemental analysis, FT-IR spectroscopy, TGA, PXRD, SEM, TEM, EDX, VSM, BET, ICP, and single-crystal X-ray diffraction. The considered polymers and their magnetic nanocomposites with nearly the same antibacterial activity demonstrated a highly inhibitive effect on the growth of Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria. By considering the simple separation and recyclable characters of the magnetic nanocomposites, these materials are suitable to be used in biological applications.
Collapse
Affiliation(s)
- Susan Soleymani-Babadi
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Azizolla Beheshti
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Elahe Nasiri
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Maryam Bahrani-Pour
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hossein Motamedi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peter Mayer
- LMU München Department Chemie Butenandtstr, 5-13, (D)81377 München, Germany
| |
Collapse
|
21
|
Abdel‐Rahman LH, Basha MT, Al‐Farhan BS, Shehata MR, Abdalla EM. Synthesis, characterization, potential antimicrobial, antioxidant, anticancer, DNA binding, and molecular docking activities and DFT on novel Co(II), Ni(II), VO(II), Cr(III), and La(III) Schiff base complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Maram T. Basha
- Department of Chemistry, College of Science University of Jeddah Jeddah Saudi Arabia
| | - Badriah Saad Al‐Farhan
- Chemistry Department, Faculty of Girls for Science King Khalid University Abha Saudi Arabia
| | | | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science New Valley University Alkharga Egypt
| |
Collapse
|
22
|
Shiju C, Arish D, Bhuvanesh N, Kumaresan S. Synthesis, characterization and biological studies of a sterically hindered symmetrical nitrogen donor ligand and its metal complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
CuO-NPs/TFA: a New Catalytic System to Synthesize a Novel Series of Pyrazole Imines with High Antioxidant Properties. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Abdelghany MM, Ahmed IS, Dessouki HA, Abdelrahman EA. Facile Synthesis of CuO and Ag Nanoparticles by Thermal Decomposition of Novel Schiff Base Complexes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02032-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Alkış ME, Keleştemür Ü, Alan Y, Turan N, Buldurun K. Cobalt and ruthenium complexes with pyrimidine based schiff base: Synthesis, characterization, anticancer activities and electrochemotherapy efficiency. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations. CRYSTALS 2020. [DOI: 10.3390/cryst10111004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The new mono-, di- and tetranuclear coordination compounds [Cu(HL1)]·H2O (1), [Cu2(L1)(OAc)(MeOH)]·2H2O·MeOH (2), [Cu4(L2)2(OAc)2]·4MeOH (3), and [Cu4(L2)2(OAc)2]·4H2O·4MeOH (4) were synthesized by the direct reaction of 2,2′-{(2-hydroxypropane-1,3-diyl)bis[nitrilomethylidene]}bis(4-bromo-6-methoxyphenol) (H3L1) or 2,2′-{(2-hydroxypropane-1,3-diyl)bis(nitriloeth-1-yl-1-ylidene)}diphenol (H3L2) and the Cu(II) salt. They were characterized by elemental analysis, X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy, simultaneous thermal analysis and differential scanning calorimetry (TG/DSC), and thermal analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR) techniques and the single crystal X-ray diffraction study. In the dinuclear complex 2, the copper(II) ions are bridged by an alkoxo- and a carboxylato bridges. The tetranuclear complexes 3 and 4 are formed from dinuclear species linkage through the phenoxo oxygen atoms of the fully deprotonated H3L2. Compounds 1–4 are stable at room temperature. During heating in air, at first, the solvent molecules (water and/or methanol) are lost and after that, the organic part undergoes defragmentation and combustion. The final decomposition solid product is CuO. The main gaseous products resulting from the thermal degradation of 1–4 in a nitrogen atmosphere were: H2O, MeOH, CH3COOH, CH4, C6H5OH, CO2, CO, and NH3.
Collapse
|