1
|
Lukyanova VA, Kuznetsov VV, Konstantinova NM, Dmitrenok AS, Kosaya MP, Dorofeeva OV, Druzhinina AI. Enthalpy of formation of 6-phenyl-1,5-diazabicyclo[3.1.0]hexane by combustion calorimetry and theoretical approach for efficient prediction of thermochemistry of diaziridines. Phys Chem Chem Phys 2023; 25:25289-25298. [PMID: 37701931 DOI: 10.1039/d3cp03290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The combustion energy and standard molar enthalpy of formation of crystalline 6-phenyl-1,5-diazabicyclo[3.1.0]hexane (PDABH) were determined using an isoperibolic calorimeter with a static bomb. PDABH is the first diaziridine for which the experimental value of the enthalpy of formation was obtained. This value was validated by the theoretical values of gas phase enthalpy of formation and enthalpy of sublimation. The gas phase enthalpy of formation was calculated using the DLPNO-CCSD(T1)/CBS method in conjunction with isodesmic-type reactions. This method was chosen in comparison to another high quality evaluative method (G4), which has been shown to provide unreliable results for cyclic nitrogen containing compounds. The descriptors of the molecular electrostatic potential (MEP) were used to estimate the enthalpy of sublimation of PDABH. The proposed MEP model is based on experimental enthalpies of sublimation for 75 compounds structurally similar to PDABH. The high-level ab initio calculations of gas phase enthalpies of formation combined with enthalpies of sublimations estimated using descriptors of MEP allow predicting the enthalpies of formation of diaziridines in the solid phase.
Collapse
Affiliation(s)
- Vera A Lukyanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vladimir V Kuznetsov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Andrey S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria P Kosaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Olga V Dorofeeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anna I Druzhinina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Belyakov AV, Kuznetsov VV, Shimanskaya GS, Rykov AN, Goloveshkin AS, Novakovskaya YV, Shishkov IF. Molecular structure of 1,1',6,6'-tetraaza-7,7'-bi(bicyclo[4.1.0]heptane) in gas, solid and solution phases: GED, XRD and NMR data combined with quantum chemical calculations. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Kuznetsov V, Khakimov D, Dmitrenok A, Goloveshkin A. Synthesis, structure and peculiarity of conformational behavior of 1,5-diazabicyclo[3.1.0]hexanes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kolesnikova IN, Kuznetsov VV, Goloveshkin AS, Chegodaev NA, Makhova NN, Shishkov IF. 6,6′-Dimethyl-1,1′,5,5′-tetraaza-6,6′-bi(bicyclo[3.1.0]hexane): synthesis and investigation of molecular structure by quantum-chemical calculations, NMR spectroscopy and X-ray diffraction analysis. Struct Chem 2021. [DOI: 10.1007/s11224-021-01806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Tachrim ZP, Wang L, Murai Y, Hashimoto M. New Trends in Diaziridine Formation and Transformation (a Review). Molecules 2021; 26:4496. [PMID: 34361648 PMCID: PMC8348119 DOI: 10.3390/molecules26154496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
This review focuses on diaziridine, a high strained three-membered heterocycle with two nitrogen atoms that plays an important role as one of the most important precursors of diazirine photoaffinity probes, as well as their formation and transformation. Recent research trends can be grouped into three categories, based on whether they have examined non-substituted, N-monosubstituted, or N,N-disubstituted diaziridines. The discussion expands on the conventional methods for recent applications, the current spread of studies, and the unconventional synthesis approaches arising over the last decade of publications.
Collapse
Affiliation(s)
- Zetryana Puteri Tachrim
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Frontier Research Center for Post-Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
| |
Collapse
|