1
|
Thangamani A, Ramalingam A, Sambandam S, Al-Dossary OM, ISSAOUI N. Synthesis, exploring the structural, non covalent interaction effects, biological assessment, molecular docking and quantum chemical properties of functionalized new N-nitrosopiperidin-4-one: An experimental and theoretical study. J Mol Liq 2025; 417:126625. [DOI: 10.1016/j.molliq.2024.126625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
2
|
Dadou S, Altay A, Baydere C, Anouar EH, Türkmenoğlu B, Koudad M, Dege N, Oussaid A, Benchat N, Karrouchi K. Chalcone-based imidazo[2,1- b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies. J Biomol Struct Dyn 2025; 43:261-276. [PMID: 38009853 DOI: 10.1080/07391102.2023.2280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
In this work, two novel chalcone-based imidazothiazole derivatives ITC-1 and ITC-2 were synthesized and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry with electrospray ionization, and chemical structure of ITC-1 was confirmed by single-crystal X-ray diffraction. Also, the anticancer activity of ITC-1 and ITC-2 was evaluated. First, antiproliferative activity tests were performed against cancer cells namely, human-derived breast adenocarcinoma (MCF-7), lung carcinoma (A-549), and colorectal adenocarcinoma (HT-29) cell lines, and mouse fibroblast healthy cell line (3T3-L1) by XTT assay. Afterward, mitochondrial membrane disruption (MMP), caspase activity, and apoptosis tests were performed on MCF-7 cells to elucidate the anticancer mechanism of action of the test compounds by flow cytometry analysis. XTT results revealed that both compounds exhibited a very high degree of antiproliferative effects on each tested cancer cell line with very low IC50 values while showing much lower antiproliferation on 3T3-L1 normal cells with much higher IC50 values. Besides, ITC-2 was determined to have a striking cytotoxic power competing with the chemotherapeutic drug carboplatin. Flow cytometry results demonstrated the mitochondrial-mediated apoptotic effects of both compounds through membrane disruption and multi-caspase activation in MCF-7 cells. Finally, molecular docking studies were performed to determine the structural understanding of the test compounds by their interactions on caspase-3 and DNA dodecamer enzymes, respectively. The interactions between the compound and the crystal structure were determined according to parameters such as free binding energies (ΔGBind), Glide score values, and determination of the active binding site. The obtained data suggest that ITC-1 and ITC-2 may be considered remarkable anticancer drug candidates. In addition to molecular docking via in silico approaches, the pharmacokinetic properties of compounds ITC-1 and ITC-2 were calculated using the Schrödinger 2021-2 Qikprop wizard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Said Dadou
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cemile Baydere
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mohammed Koudad
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdelouahad Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Ludwig G, Ranđelović I, Dimić D, Komazec T, Maksimović-Ivanić D, Mijatović S, Rüffer T, Kaluđerović GN. (Pentamethylcyclopentadienyl)chloridoiridium(III) Complex Bearing Bidentate Ph 2PCH 2CH 2SPh-κ P,κ S Ligand. Biomolecules 2024; 14:420. [PMID: 38672437 PMCID: PMC11048224 DOI: 10.3390/biom14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κP,κS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and characterized. Multinuclear (1H, 13C and 31P) NMR spectroscopy was employed for the determination of the structure. Moreover, SC-XRD confirmed the proposed structure belongs to the "piano stool" type. The Hirshfeld surface analysis outlined the most important intermolecular interactions in the structure. The crystallographic structure was optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,P,S,Cl)/LanL2DZ(Ir) level of theory. The applicability of this level was verified through a comparison of experimental and theoretical bond lengths and angles, and 1H and 13C NMR chemical shifts. The Natural Bond Orbital theory was used to identify and quantify the intramolecular stabilization interactions, especially those between donor atoms and Ir(III) ions. Complex 1 was tested on antitumor activity against five human tumor cell lines: MCF-7 breast adenocarcinoma, SW480 colon adenocarcinoma, 518A2 melanoma, 8505C human thyroid carcinoma and A253 submandibular carcinoma. Complex 1 showed superior antitumor activity against cisplatin-resistant MCF-7, SW480 and 8505C cell lines. The mechanism of tumoricidal action on 8505C cells indicates the involvement of caspase-induced apoptosis, accompanied by a considerable reduction in ROS/RNS and proliferation potential of treated cells.
Collapse
Affiliation(s)
- Gerd Ludwig
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle, Germany;
| | - Ivan Ranđelović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Teodora Komazec
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, D-09111 Chemnitz, Germany;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, D-06217 Merseburg, Germany
| |
Collapse
|
4
|
Omotayo IA, Banjo S, Emmanuel OT, Felix LD, Kolawole OA, Dele OA, Olasegun AI, Dasola AM, Ayobami OO. Molecular properties and In silico bioactivity evaluation of (4-fluorophenyl)[5)-3-phen-(4-nitrophenyl yl-4,5-dihydro-1 H-pyrazol-1-yl]methanone derivatives: DFT and molecular docking approaches. J Taibah Univ Med Sci 2023; 18:1386-1405. [PMID: 37324403 PMCID: PMC10267600 DOI: 10.1016/j.jtumed.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives Molecular structures, spectroscopic properties, charge distributions, frontier orbital energies, nonlinear optical (NLO) properties and molecular docking simulations were analyzed to examine the bio-usefulness of a series of (4-fluorophenyl)[5-(4-nitrophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]methanone derivatives. Methods The compounds were studied through computational methods. Equilibrium optimization of the compounds was performed at the B3LYP/6-31G(d,p) level of theory, and geometric parameters, frequency vibration, UV-vis spectroscopy and reactivity properties were predicted on the basis of density functional theory (DFT) calculations. Results The energy gap (ΔEg), electron donating/accepting power (ω-/ω+) and electron density response toward electrophiles/nucleophiles calculated for M1 and M2 revealed the importance of substituent positioning on compound chemical behavior. In addition, ω-/ω+ and ΔEn/ΔEe indicated that M6 is more electrophilic because of the presence of two NO2 groups, which enhanced its NLO properties. The hyperpolarizability (β0) of the compounds ranged from 5.21 × 10-30 to 7.26 × 10-30 esu and was greater than that of urea; thus, M1-M6 were considered possible candidates for NLO applications. Docking simulation was also performed on the studied compounds and targets (PDB ID: 5ADH and 1RO6), and the calculated binding affinity and non-bonding interactions are reported. Conclusion The calculated ω- and ω+ indicated the electrophilic nature of the compounds; M6, a compound with two NO2 groups, showed enhanced effects. Molecular electrostatic potential (MEP) analysis indicated that amide and nitro groups on the compounds were centers of electrophilic attacks. The magnitude of the molecular hyperpolarizability suggested that the entire compound had good NLO properties and therefore could be explored as a candidate NLO material. The docking results indicated that these compounds have excellent antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ibrahim A. Omotayo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Semire Banjo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oladuji T. Emmanuel
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Latona D. Felix
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | | | - Owonikoko A. Dele
- Department of Chemistry, Emmanuel Alayande College of Education, Nigeria
| | | | - Adeoye M. Dasola
- Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | - Odunola O. Ayobami
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Chemistry, Faculty of Natural and Applied Sciences, Hallmark University, Ijebu-Itele, Nigeria
| |
Collapse
|
5
|
Jevtovic V, Alshamari AK, Milenković D, Dimitrić Marković J, Marković Z, Dimić D. The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int J Mol Sci 2023; 24:11910. [PMID: 37569285 PMCID: PMC10419307 DOI: 10.3390/ijms241511910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Thiosemicarbazones and their transition metal complexes are biologically active compounds and anticancer agents with versatile structural properties. In this contribution, the structural features and stability of four pyridoxal-thiosemicarbazone (PLTSC) complexes with Fe, Co, Ni, and Cu were investigated using the density functional theory and natural bond orbital approach. Special emphasis was placed on the analysis of the donor atom-metal interactions. The geometry of compounds and crystallographic structures were further examined by Hirshfeld surface analysis, and the main intermolecular interactions were outlined. It has been shown that the geometry and the number of PLTSC units in the structure determine the type and contribution of the specific interactions. The binding of all four complexes to bovine and human serum albumin was investigated through spectrofluorometric titration. The dependency of the thermodynamic parameters on the present metal ion and geometry was explained by the possible interactions through molecular docking simulations. The binding of complexes to DNA, as one of the possible ways the compounds could induce cell death, was examined by molecular docking. The cytotoxicity was measured towards HCT116, A375, MCF-7, A2780, and MCF5 cell lines, with Cu-PLTSC being the most active, as it had the highest affinity towards DNA and proteins.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha’il, Ha’il 81451, Saudi Arabia
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, University Ha’il, Ha’il 81451, Saudi Arabia
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Bennani FE, Doudach L, Karrouchi K, Tarib A, Rudd CE, Ansar M, Faouzi MEA. Targeting EGFR, RSK1, RAF1, PARP2 and LIN28B for several cancer type therapies with newly synthesized pyrazole derivatives via a computational study. J Biomol Struct Dyn 2023; 41:4194-4218. [PMID: 35442150 DOI: 10.1080/07391102.2022.2064915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Cancer remains the leading cause of death in the world despite the significant advancements made in anticancer drug discovery. This study is aimed to computationally evaluate the efficacy of 63 in-house synthesized pyrazole derivatives targeted to bind with prominent cancer targets namely EGFR, RSK1, RAF1, PARP2 and LIN28B known to be expressed, respectively, in lung, colon, skin, ovarian and pancreatic cancer cells. Initially, we perform the molecular docking investigations for all pyrazole compounds with a comparison to known standard drugs for each target. Docking studies have revealed that some pyrazole compounds possess better binding affinity scores than standard drug compounds. Thereafter, a long-range of 1 μs molecular dynamic (MD) simulation study for top ranked docked compounds with all respective proteins was carried out to assess the interaction stability in a dynamic environment. The results suggested that the top ranked complexes showed a stable interaction profile for a longer period of time. The outcome of this study suggests that pyrazole compounds, M33, M36, M76 and M77, are promising molecular candidates that can modulate the studied target proteins significantly in comparison to their known inhibitor based on their selective binding interactions profile. Furthermore, ADME-T profile has been explored to check for the drug-likeness and pharmacokinetics profiles and found that all proposed compounds exhibited acceptable values for being a potential drug-like candidate with non-toxic characteristics. Overall, extensive computational investigations indicate that the four proposed pyrazole inhibitors/modulators studied against each respective target protein will be helpful for future cancer therapeutic developments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelilah Tarib
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Christopher E Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
7
|
Jeeva P, Sudha S, Rakić A, Dimić D, Ramarajan D, Barathi D. Structural, spectroscopic, quantum chemical, and molecular docking study towards cartilage protein of (3E,3′E)-3,3′-(1,4-phenylenebis(azanediyl))bis(cyclohex-2-en-1-one). J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Syntheses, structural characterizations, and catalytic activities of manganese(II)-aroylhydrazone complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Synthesis, spectra, crystal, DFT, molecular docking and in vitro cholinesterase inhibition evaluation on two novel symmetrical Azine Schiff Bases. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Reddy GN, Losetty V, Hazarathaiah Yadav C. Synthesis of Novel Schiff Base Metal Complexes and their Spectroscopic Characterization, Biological Activity and Molecular Docking Investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
El Kalai F, Çınar EB, Sert Y, Alhaji Isa M, Lai CH, Buba F, Dege N, Benchat N, Karrouchi K. Synthesis, crystal structure, DFT, Hirshfeld surface analysis, energy framework, docking and molecular dynamic simulations of ( E)-4-(4-methylbenzyl)-6-styrylpyridazin-3( 2H)-one as anticancer agent. J Biomol Struct Dyn 2023; 41:11578-11597. [PMID: 36617972 DOI: 10.1080/07391102.2022.2164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
In this work, a novel crystal, (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one (E-BSP) was synthesized via Knoevenagel condensation of benzaldehyde and (E)-6-(4-methoxystyryl)-4,5-dihydropyridazin-3(2H)-one. The molecular structure of E-BSP was confirmed by using FT-IR, 1H-NMR, 13C-NMR, UV-vis, ESI-MS, TGA/DTA thermal analyses and single crystal X-ray diffraction. The DFT/B3LYP methods with the 6-311++G(d,p) basis set were used to determine the vibrational modes over the optimized structure. Potential energy distribution (PED) and the VEDA 4 software were used to establish the theoretical mode assignments. The same approach was used to compute the energies of frontier molecular orbitals (HOMO-LUMO), global reactivity descriptors, and molecular electrostatic potential (MEP). Additionally, experimental and computed UV spectral parameters were determined in methanol and the obtained outputs were supported by FMO analysis. Molecular docking and molecular dynamics (MD) simulation analyses of the E-BSP against six proteins obtained from different cancer pathways were carried out. The proteins include; epidermal growth factor receptor (EGFR), Estrogen receptor (ERα), Mammalian target of rapamycin (mTOR), Progesterone receptor (PR) (Breast cancer), Human cyclin-dependent kinase 2 (CDK2) (Colorectal cancer), and Survivin (Squamous cell carcinoma/Non-small cell lung cancer). The results of the analyses showed that the compound had less binding energies ranging between -6.30 to -9.09 kcal/mol and formed stable complexes at the substrate-binding site of the proteins after the 50 ns MD simulation. Therefore, E-BSP was considered a potential inhibitor of different cancer pathways and should be used for the treatment of cancer after experimental validation and clinical trial.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fouad El Kalai
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Emine Berrin Çınar
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Science and Art Faculty-Department of Physics, Yozgat Bozok University, Yozgat, Turkey
| | - Mustafa Alhaji Isa
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fatimah Buba
- Department of Biochemistry, Faculty of Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
12
|
Synthesis, crystal structure and thermal investigation of molecular salts of (R)-1-phenylethanamine combined with quantum chemical studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Synthesis, crystal structure and computational studies of new steroidal hemisuccinyl ester derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Metin M, Kawano T, Okobira T. Benchmarking computational chemistry approaches on iminodiacetic acid. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Al-Otaibi JS, Sheena Mary Y, Fazil S, Mary YS, Sarala S. Modeling the structure and reactivity landscapes of a pyrazole-ammonium ionic derivative using wavefunction-dependent characteristics and screening for potential anti-inflammatory activity. J Biomol Struct Dyn 2022; 40:11190-11202. [PMID: 34328395 DOI: 10.1080/07391102.2021.1957020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spectroscopic investigations of 1-phenyl -2,3-dimethyl-5-oxo-1,2-dihydro-1H-pyrazol-4-ammonium 2[(2-carboxyphenyl) disulfanyl]benzoate (PACB) reported experimentally and theoretically. NH-O interaction is observed and there is a very large downshift for NH-O stretching frequency. Reactive sites are identified from the chemical and electronic properties. For PACB the maximum repulsion was around H33, H55 and H57 atom. LOL shows red regions between C-C and blue around C atoms are surrounded by a delocalized electron cloud. The red ring is a hallmark of electron density depletion from the NCI plot due to electrostatic repulsion and its existences suggests that coordination sphere for PACB is minimally strained around the central ion. Atomic contact energy values and high score of the docking results obtained propose that, PACB may have inhibitory properties and have a significant function in pharmacological chemistry. Molecular dynamics simulation was performed to validate the stability of the title compound with the Bovine thrombin-activatable fibrinolysis inhibitor protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Shiji Fazil
- Department of Chemistry, Mannaniya College of Arts and Science, Pangode, Kerala, India
| | | | - S Sarala
- Department of Physics, Kanchi Shri Krishna College of Arts and Science, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
16
|
Ezeorah CJ, Ekowo LC, Eze SI, Groutso T, Atiga S, Okafor SN, Ukwueze NN, Okpareke OC. Synthesis, characterization, and in silico studies of 2-[(E)-(2,5-dimethoxybenzylidene)amino]phenol and 3-[(E)-(2,5-dimethoxybenzylidene)amino]phenol. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Fizer O, Fizer M, Filep M, Sidey V, Mariychuk R. On the structure of cetylpyridinium perchlorate: A combined XRD, NMR, IR and DFT study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Regioselective synthesis of spirooxindole-pyrolidine via (GAP) chemistry process: Experimental and DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Shakeel A, Bakhshi H, Ahmed T, Watanabe L, Turnbull MM, Al-Harrasi A, Anwar MU. Linear Mn(II)4Ln(III)2 (Ln = Gd, Dy, Tb) Heterometallic Complexes from a Ditopic Hydrazone Ligand: Slow Magnetic Relaxation in Mn4Dy2 Complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Jevtovic V, Alshammari N, Latif S, Alsukaibi AKD, Humaidi J, Alanazi TYA, Abdulaziz F, Matalka SI, Pantelić NĐ, Marković M, Rakić A, Dimić D. Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone. Molecules 2022; 27:molecules27196322. [PMID: 36234859 PMCID: PMC9570950 DOI: 10.3390/molecules27196322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
New Ni (II) and Cu (II) complexes with pyridoxal-semicarbazone were synthesized and their structures were solved by X-ray crystallography. This analysis showed the bis-ligand octahedral structure of [Ni(PLSC-H)2]·H2O and the dimer octahedral structure of [Cu(PLSC)(SO4)(H2O)]2·2H2O. Hirshfeld surface analysis was employed to determine the most important intermolecular interactions in the crystallographic structures. The structures of both complexes were further examined using density functional theory and natural bond orbital analysis. The photocatalytic decomposition of methylene blue in the presence of both compounds was investigated. Both compounds were active toward E. coli and S. aureus, with a minimum inhibition concentration similar to that of chloramphenicol. The obtained complexes led to the formation of free radical species, as was demonstrated in an experiment with dichlorofluorescein-diacetate. It is postulated that this is the mechanistic pathway of the antibacterial and photocatalytic activities. Cyclic voltammograms of the compounds showed the peaks of the reduction of metal ions. A molecular docking study showed that the Ni(II) complex exhibited promising activity towards Janus kinase (JAK), as a potential therapy for inflammatory diseases, cancers, and immunologic disorders.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Njood Alshammari
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Salman Latif
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | | | - Jamal Humaidi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Tahani Y. A. Alanazi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Samah I. Matalka
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Nebojša Đ. Pantelić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milica Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandra Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
21
|
Structural, spectroscopic and quantum chemical analysis of an exocyclic extended double-bonded chalcone single crystal, with pharmaceutical scanning for breast cancer using MCF-7 cell line and EGFR domain target. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Thari FZ, Fettach S, Anouar EH, Tachallait H, Albalwi H, Ramli Y, Mague JT, Karrouchi K, Faouzi MEA, Bougrin K. Synthesis, crystal structures, α-glucosidase and α-amylase inhibition, DFT and molecular docking investigations of two thiazolidine-2,4-dione derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Karrouchi K, Sert Y, Ansar M, Radi S, El Bali B, Imad R, Alam A, Irshad R, Wajid S, Altaf M. Synthesis, α-Glucosidase Inhibition, Anticancer, DFT and Molecular Docking Investigations of Pyrazole Hydrazone Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Faculty of Medicine and Pharmacy, Laboratory of Analytical Chemistry and Bromatology, Mohammed V University in Rabat, Rabat, Morocco
| | - Yusuf Sert
- Science and Art Faculty, Department of Physics, Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Smaail Radi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Department of Chemistry, University Mohammed Premier, Oujda, Morocco
| | - Brahim El Bali
- Laboratory of Organic, Macromolecular Chemistry and Natural Products, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Rehan Imad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Anum Alam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rimsha Irshad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sheeba Wajid
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| | - Muhammad Altaf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| |
Collapse
|
24
|
Mahadevi P, Sumathi S, Metha A, Singh J. Synthesis, spectral, antioxidant, in vitro cytotoxicity activity and thermal analysis of Schiff base metal complexes with 2,2′-Bipyridine-4,4′-dicarboxylic acid as co-ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Bennani FE, Doudach L, Karrouchi K, El rhayam Y, Rudd CE, Ansar M, El Abbes Faouzi M. Design and prediction of novel pyrazole derivatives as potential anti-cancer compounds based on 2D-2D-QSAR study against PC-3, B16F10, K562, MDA-MB-231, A2780, ACHN and NUGC cancer cell lines. Heliyon 2022; 8:e10003. [PMID: 35965973 PMCID: PMC9372603 DOI: 10.1016/j.heliyon.2022.e10003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/22/2022] [Accepted: 07/14/2022] [Indexed: 01/20/2023] Open
Abstract
Despite the decades of scientific studies for developing promising new therapies, cancer remains a major cause of illness and mortality, worldwide. Several cancer types are the major topic of research in drug discovery programs due to their global incidence cases and growing frequency. In the present study, using two different statistical approaches PCA (principal component analysis) and PLS (partial least squares), six 2D-QSAR (quantitative structure activity relationship) models have been developed for the set of compounds retrieved against seven cancer cell lines vizPC-3, B16F10, K562, MDA-MB-231, A2780, and ACHN. For the creation and validation of 2D-QSAR models, OECD (Organization for Economic Co-operation and Development) requirements have been strictly followed. All of the generated 2D-QSAR models produce a significant and high correlation coefficient value with several other statistical parameters. Moreover, developed 2D-QSAR models have been used for activity predictions of in-house synthesized 63 pyrazole derivatives compounds. Precisely, most statistically significant and accepted2D-QSAR model generated for each cancer cell line has been used to predict the pIC50 value (anti-cancer activity) of all 63 synthesized pyrazole derivatives. Furthermore, designing of novel pyrazole derivatives has been carried out by substituting the essential functional groups based on the best derived 2D-QSAR models for each cancer cell line, more precisely, based on the most significant molecular descriptors with enhanced anti-cancer activity. Finally, the prediction of the new designed molecules reveals higher pIC50 than the standard compounds.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Corresponding author.
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| | - Youssef El rhayam
- Agro-Resources Laboratory, Organic Polymers and Process Engineering (LRGP) / Organic and Polymer Chemistry Team (ECOP), Faculty of Sciences Ibn Tofail University, Kenitra, Morocco
| | - Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| |
Collapse
|
26
|
Uludag N, Serdaroğlu G, Sugumar P, Rajkumar P, Colak N, Ercag E. Synthesis of thiophene derivatives: Substituent effect, antioxidant activity, cyclic voltammetry, molecular docking, DFT, and TD-DFT calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Pooja K, Fatima A, Sharma A, Garima K, Savita S, Kumar M, Verma I, Siddiqui N, Javed S. Experimental, theoretical, hirschfeld surface, electronic excitation and molecular docking studies on fomepizole(4-Methyl-1H-pyrazole). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Priya MK, Jonathan DR, Muthu S, Shirmila DA, Hemalatha J, Usha G. Structural examination, theoretical calculations, and pharmaceutical scanning of a new tetralone based chalcone derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Synthesis, antiproliferative, docking and DFT studies of benzimidazole derivatives as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Clara TH, Prasana JC, Prabhu N, Rizwana BF. Spectroscopic profiling and molecular docking of novel chalcone derivative (2E)-1-(3,4-dimethoxyphenyl)-3-(4-n-propyloxyphenyl)-2-propen-1-one- A prospective respiratory drug. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Synthesis of benzidine-based conjugated organic materials bearing donor-acceptor groups: DFT studies and photovoltaic applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Chkirate K, Karrouchi K, Chakchak H, Mague JT, Radi S, Adarsh NN, Li W, Talbaoui A, Essassi EM, Garcia Y. Coordination complexes constructed from pyrazole-acetamide and pyrazole-quinoxaline: effect of hydrogen bonding on the self-assembly process and antibacterial activity. RSC Adv 2022; 12:5324-5339. [PMID: 35425576 PMCID: PMC8981392 DOI: 10.1039/d1ra09027e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Two mononuclear coordination complexes of N-(2-aminophenyl)-2-(5-methyl-1H-pyrazol-3-yl)acetamide (L1), namely [Cd(L1)2Cl2] (C1) and [Cu(L1)2(C2H5OH)2](NO3)2 (C2) and one mononuclear complex [Fe(L2)2(H2O)2](NO3)2·2H2O (C3), obtained after in situ oxidation of L1, have been synthesized and characterized spectroscopically. As revealed by single-crystal X-ray diffraction, each coordination sphere made of two heterocycles is completed either by two chloride anions (in C1), two ethanol molecules (in C2) or two water molecules (in C3). The crystal packing analysis of C1, C2 and C3, revealed 1D and 2D supramolecular architectures, respectively, via various hydrogen bonding interactions, which are discussed in detail. Furthermore, evaluation in vitro of the ligands and their metal complexes for their antibacterial activity against Escherichia coli (ATCC 4157), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923) and Streptococcus fasciens (ATCC 29212) strains of bacteria, revealed outstanding results compared to chloramphenicol, a well-known antibiotic, with a normalized minimum inhibitory concentration as low as 5 μg mL-1.
Collapse
Affiliation(s)
- Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohamed V University BP1014 Rabat 10100 Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat Morocco
| | - Hind Chakchak
- Unités d'Appui Techniques À la Recherche Scientifique (UATRS), Centre National Pour la Recherche Scientifique et Technique (CNRST) Rabat 10000 Morocco
| | - Joel T Mague
- Mohammed First University, Oujda, Faculty of Sciences Oujda, LCAE Oujda Morocco
| | - Smaail Radi
- LCAE, Département de Chimie, Faculté des Sciences, Université Mohamed I BP 524 60 000 Oujda Morocco
| | - N N Adarsh
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 Kerala India
| | - Weiyang Li
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Ahmed Talbaoui
- Laboratoire de Biologie des Pathologies Humaines, Faculté des Sciences, Université Mohammed V de Rabat Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohamed V University BP1014 Rabat 10100 Morocco
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
33
|
Karrouchi K, Fettach S, Tamer Ö, Avcı D, Başoğlu A, Atalay Y, Radi S, Ghabbour HA, Mabkhot YN, Faouzi MEA, Ansar M. Experimental and Computational Interaction Studies of (E)-N’-Benzylidene-5-Methyl-1H-Pyrazole-3-Carbohydrazide with α-Glucosidase and α-Amylase Enzymes: A Detailed Structural, Spectroscopic, and Biophysical Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2036774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ömer Tamer
- Faculty of Arts and Sciences, Department of Physics, Sakarya University, Sakarya, Turkey
| | - Davut Avcı
- Faculty of Arts and Sciences, Department of Physics, Sakarya University, Sakarya, Turkey
| | - Adil Başoğlu
- Faculty of Arts and Sciences, Department of Physics, Sakarya University, Sakarya, Turkey
| | - Yusuf Atalay
- Faculty of Arts and Sciences, Department of Physics, Sakarya University, Sakarya, Turkey
| | - Smaail Radi
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté Des Sciences, Université Mohamed I, Oujda, Morocco
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Yahia N. Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Saudi Arabia
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
34
|
Study of the molecular interaction between hormone and anti-cancer drug using DFT and vibrational spectroscopic methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Mahalakshmi P, Balraj V, Murugasen P, Vinitha G, Ragavendran V. Synthesis, structural-spectral characterization and density functional theoretical studies of pyridine-4-carbohydrazide bis(4-hydroxynitrobenzene). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Synthesis, crystal structure, spectroscopic characterization, α-glucosidase inhibition and computational studies of (E)-5-methyl-N′-(pyridin-2-ylmethylene)-1H-pyrazole-3-carbohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Faraki Z, Bodaghifard MA. Synthesis and characterization of a highly functionalized cationic porous organic polymer as an efficient adsorbent for removal of hazardous nitrate and chromate ions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Structural, spectroscopic (IR, Raman, and NMR), quantum chemical, and molecular docking analysis of (E)-2-(2,5-dimethoxybenzylidene)hydrazinecarbothioamide and its dimers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Pastrana-Dávila A, Amaya-Flórez A, Aranaga C, Ellena J, Macías M, Flórez-López E, D'Vries RF. Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Spectroscopic and theoretical studies on some carbohydrazone complexes and evaluation of their biological potency, catalytic, and ionophore activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Mary YS, Sheena Mary Y, Thomas R, Narayana B. Detailed Study of Three Halogenated Benzylpyrazole Acetamide Compounds with Potential Anticancer Properties. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1988997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Renjith Thomas
- Deparment of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| | - B. Narayana
- Department of Chemistry, Mangalore University, Mangaluru, Karnataka, India
| |
Collapse
|
42
|
Alsharif MA, Naeem N, Mughal EU, Sadiq A, Jassas R, Kausar S, Altaf AA, Zafar MN, Mumtaz A, Obaid RJ, Alsantali RI, Ahmed S, Ahmed I, Altass HM, Ahmed SA. Experimental and theoretical insights into the photophysical and electrochemical properties of flavone-based hydrazones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Cao T, Yang Z, Sun Y, Zhao N, Lu S, Zhang J, Wang L. Lewis Base‐Catalyzed Cycloaddition of Heterocyclic Alkenes with 2,2,2‐Trifluorodiazoethane (CF
3
CHN
2
): Access to Trifluoromethylated Pyrazolines and Pyrazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tingting Cao
- Department of Traditional Chinese Medicine Jilin Agricultural University Changchun 130118 P. R. China
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Zhen Yang
- Department of Traditional Chinese Medicine Jilin Agricultural University Changchun 130118 P. R. China
| | - Yunfang Sun
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Nannan Zhao
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Shan Lu
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Jing Zhang
- Department of Traditional Chinese Medicine Jilin Agricultural University Changchun 130118 P. R. China
| | - Lei Wang
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| |
Collapse
|
44
|
Monomeric zinc ferrocene carboxylate [Zn(FcCOO)(3,5-dmp)2Cl] derived from 3,5-dimethylpyrazole: structural, optical, electrochemical and antimicrobial studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|