1
|
Shi T, Xie Z, Mo X, Feng Y, Peng T, Wu F, Yu M, Zhao J, Zhang L, Guo J. Synthesis and Application of Salicylhydrazone Probes with High Selectivity for Rapid Detection of Cu 2. Molecules 2024; 29:2032. [PMID: 38731524 PMCID: PMC11085586 DOI: 10.3390/molecules29092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Using the aldehyde amine condensation procedure and the triphenylamine group as the skeleton structure, the new triphenylamine-aromatic aldehyde-succinylhydrazone probe molecule DHBYMH was created. A newly created acylhydrazone probe was structurally characterized by mass spectrometry (MS), NMR, and infrared spectroscopy (FTIR). Fluorescence and UV spectroscopy were used to examine DHBYMH's sensing capabilities for metal ions. Notably, DHBYMH achieved a detection limit of 1.62 × 10-7 M by demonstrating exceptional selectivity and sensitivity towards Cu2+ ions in an optimum sample solvent system (DMSO/H2O, (v/v = 7/3); pH = 7.0; cysteine (Cys) concentration: 1 × 10-4 M). NMR titration, high-resolution mass spectrometry analysis, and DFT computation were used to clarify the response mechanism. Ultimately, predicated on DHBYMH's reversible identification of Cu2+ ions in the presence of EDTA, a molecular logic gate was successfully designed.
Collapse
Affiliation(s)
- Tianzhu Shi
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China;
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China;
| | - Xinliang Mo
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Yulong Feng
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Tao Peng
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Fuyong Wu
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Mei Yu
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Jingjing Zhao
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Li Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| | - Ju Guo
- Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China; (X.M.); (T.P.); (F.W.); (M.Y.); (J.Z.); (L.Z.); (J.G.)
| |
Collapse
|
2
|
Kaur H, Riya, Singh A, Singh H, Ranjan Lal U, Kumar A, Chaitanya MVNL. Molecular recognition of carbonate ion using a novel turn-on fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123270. [PMID: 37611524 DOI: 10.1016/j.saa.2023.123270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
A novel turn-on fluorescent probe 3 was synthesized by condensing salicylaldehyde and nicotinic hydrazide for the selective detection of CO32- in aqueous medium. Probe 3 exhibited a turn-on fluorescence response toward CO32- with excellent selectivity, sensitivity (DL = 2.76 μM), and good reversibility. The binding constant (K) of probe 3 with CO32- was calculated to be 5 × 103 M-1 (log K 3.69). The 1:1 stoichiometry of the complex between probe 3 and CO32- ions was confirmed by Job's plot and ESI-MS spectra. Deprotonation and hydrogen-bonding interactions are involved in the recognition of CO32- ion, which was also suggested by 1H NMR, ESI-MS spectra, and Density Functional Theory (DFT) calculations. Moreover, an INHIBIT type molecular logic gate was constructed by using 3:CO32- and CH3COOH as inputs and current signal as output. Owing to the practical applications, probe 3 demonstrated its efficiency in quantifying CO32- ion in real water samples through standard addition method, thus showcasing its potential in real environment. Further, the MTT assay indicated very low cytotoxicity (IC50 = 1 mM) of probe 3 and also the cell imaging experiments demonstrated the effective sensing of CO32- ions with probe 3 in the biological systems.
Collapse
Affiliation(s)
- Hardeep Kaur
- Post Graduate Department of Chemistry, Khalsa College Amritsar, Punjab 143102, India.
| | - Riya
- Post Graduate Department of Chemistry, Khalsa College Amritsar, Punjab 143102, India
| | - Amandeep Singh
- Department of Pharmacognosy and Phytochemistry, Khalsa College of Pharmacy, Amritsar, Punjab 143102, India.
| | - Harpreet Singh
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Uma Ranjan Lal
- Department of Natural Product, National Institute of Pharmaceutical and Education Research, Mohali, Punjab 160062, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Education Research, Mohali, Punjab 160062, India
| | - M V N L Chaitanya
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
3
|
Alshamrani M. Medicinal importance and chemosensing applications of Schiff base derivatives for the detection of metal ions: A review. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Schiff bases, named after Hugo Schiff, are formed when primary amine reacts with carbonyl compounds (aldehyde or ketone) under specific conditions. Schiff bases are economical, simple synthetic routes, and easily accessible in laboratories. They have medicinal and biological applications such as antiviral, antioxidant, antifungal, anticancer, anthelmintic, antibacterial, antimalarial, anti-inflammatory, antiglycation, anti-ulcerogenic, and analgesic potentials. A number of Schiff bases are reported for the detection of various metal ions. They are also used as catalysts, polymer stabilizers, intermediates in organic synthesis, and corrosion inhibitors. In this review, we have highlighted the recent advancements in the development of bioactive Schiff base derivatives and their sensing applications for detecting metal cations. Additionally, various spectroscopic techniques for structural characterization, such as X-ray diffraction analysis (XRD), FT-IR, UV-vis, and NMR spectroscopy were also discussed.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Li J, Zhou C, Yang H, Wu X, Yan L. Two near-infrared fluorescent probes based on dicyanoisfluorone for rapid monitoring of Zn 2+and Pb 2. Methods Appl Fluoresc 2022; 10. [PMID: 35588718 DOI: 10.1088/2050-6120/ac7199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Zinc (Zn2+) and lead (Pb2+) ions in the environment have important effects on human health and environmental safety. Therefore, it is of great significance to realize convenient and reliable detection of these two metal ions. In this study, two near-infrared fluorescent probes for the fast detection of Zn2+ and Pb2+ were synthesized by a simple Schiff base reaction between the dicyanoisophorone skeleton and carbohydrazide derivatives. Among them, the probe with the thiophene-2-carbohydrazide group showed a selective fluorescence response to Zn2+ and Pb2+ with a maximum emission wavelength of 670 nm. And the detection limits of the probe for Zn2+ and Pb2+ were 1.59 nM and 1.65 nM, respectively. In contrast the probe modified by the furan-2-carbohydrazide group achieved quantitative detection of Zn2+, with a detection limit of 2.7 nM. These results were attributed to the fact that the probes bind to Zn2+ and Pb2+ in stoichiometric ratios of 1:1, blocking the intramolecular PET effect. Furthermore, these two probes can be recycled through the action of EDTA and have been successfully used to detect Zn2+ and Pb2+ in real water samples.
Collapse
Affiliation(s)
- Jia Li
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China, Guilin, 541006, CHINA
| | - Cuiping Zhou
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China, Guilin, 541006, CHINA
| | - Hong Yang
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China, Guilin, 541006, CHINA
| | - Xiongzhi Wu
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China, Guilin, 541006, CHINA
| | - Liqiang Yan
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China, Guilin, 541006, CHINA
| |
Collapse
|
5
|
Yan L, Yang H, Li J, Zhou C, Li L, Wu X, Lei C. A near infrared fluorescent probe for detection and bioimaging of zinc ions and hypochloric acid. Anal Chim Acta 2022; 1206:339750. [DOI: 10.1016/j.aca.2022.339750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022]
|
6
|
Ahmed AAM, Mekky AEM, Sanad SMH. Effective synthesis of new benzo-fused macrocyclic and heteromacrocyclic bis(Schiff bases). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02409-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
A novel and simple fluorescent chemical sensor SX based on AIE for relay recognition of Zn2+ and Cu2+ in aqueous system and analysis in logic gates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
An N, Wang D, Zhao H, Gao Y. A spectroscopic probe for hypochlorous acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120529. [PMID: 34785148 DOI: 10.1016/j.saa.2021.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A spectroscopic probe CMBT was synthesized and characterized. CMBT showed the specific recognition for HClO based on the turn-on blue fluorescence and naked-eye change from pink to colorless. NMR, IR, HRMS-ESI, and spectral analysis suggested that colorimetric and fluorescent change of CMBT to HClO originated from the conversion of CMBT to starting material coumarin-aldehyde 1 caused by the oxidization of HClO, which was responsible for the fluorescence recovery. The detection limit was calculated to be 1.61 μM and 6.58 μM for fluorescence and UV-vis analysis with a range up to 1 mM. HClO's fluorescence detection was successfully achieved in tap and river water samples. The prepared convenient paper test strips showed a distinct color change in varying concentrations of HClO. A multi-input molecular logic circuit was constructed.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dan Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hui Zhao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunling Gao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
9
|
Alharbi KH. A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions. Crit Rev Anal Chem 2022; 53:1472-1488. [PMID: 35108139 DOI: 10.1080/10408347.2022.2033611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Organic compounds display several electronic and structural features which enable their application in various fields, ranging from biological to non-biological. These compounds contain heteroatoms like sulfur, nitrogen and, oxygen, which provide coordination sites to act as ligands in the field of coordination chemistry and are used as chemosensors to detect various metal ions. This review article covers different organic compounds including Schiff bases, thiourea, pyridine, rhodamine, triazole, pyrene, coumarin, imidazole, diaminomaleonitrile, naphthoxazole, pyrimidine, thiophene, thioether, and other functional groups based chemosensors that contain heteroatoms like sulfur, nitrogen and, oxygen for fluorimetric and colorimetric detection of Zn(II) ions in different environmental, agricultural, and biological samples. Further, the sensing performances of these chemosensors have been compared and discussed which could help the readers for the future design of organic fluorescent and colorimetric chemosensors for the detection of Zn(II) ions. We hope this study will support the new thoughts to design a simple, efficient, selective, and sensitive chemosensor for the detection of Zn(II) ions in different samples (environmental, agricultural, and biological).
Collapse
Affiliation(s)
- Khadijah H Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Balashova TV, Arsenyev MV, Polyakova SK, Ilichev VA, Kukinov AA, Rumyantcev RV, Fukin GK, Trufanov AN, Bochkarev MN. Zn(II) complexes of substituted oxyacridinate ligands. Synthesis, structure and properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|