1
|
Salman HR, Al-Zubaidy AA, Abbas AH, Zigam QA. The ameliorative effects of topical gemifloxacin alone or in combination with clobetasol propionate on imiquimod-induced model of psoriasis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:599-616. [PMID: 37490123 DOI: 10.1007/s00210-023-02629-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Psoriasis is a lifelong immune-driven skin condition characterized by excessive epidermal overgrowth and inflammatory cell infiltration. Gemifloxacin is a fourth-generation fluoroquinolone with improved immunomodulatory and anti-inflammatory properties that are believed to possess an attractive role in psoriasis via suppressing the production of cytokines, chemokines, and eosinophil and neutrophil chemotaxis. The aim of this research is to investigate the ameliorative effects of prolonged topical gemifloxacin (GMF) alone and combined with clobetasol propionate (CLO) on an imiquimod (IMQ)-induced mouse model of psoriasis. Forty-eight Swiss albino mice were divided into six groups of eight. All groups except the negative controls got 62.5 mg of IMQ 5% topically for 8 days. Mice in the control group (controls) got Vaseline instead. Following the induction in the IMQ 5% group, mice in treatment groups CLO 0.05, GMF 1%, GMF 3%, and CLO + GMF obtained clobetasol propionate 0.05%, GMF 1% and 3%, and a combination of both, respectively, for an additional 8 days, rendering the experiment 16 days long. Our results revealed that gemifloxacin alleviated erythematous, thickened, and scaly psoriatic lesions and inhibited the tissue level of inflammatory cytokines, including interleukin (IL)-8, IL-17A, IL-23, tumor necrosis factor-α (TNF-α), and transforming growth factor-β1 (TGF-β1). The anti-inflammatory effect also occurred by hindering nuclear factor-kappa B (NF-κB) signaling and reversing histopathological problems. Gemifloxacin acts effectively in mitigating psoriasis-associated lesions and restricting NF-κB-mediated inflammation, recommending gemifloxacin as a promising adjuvant candidate for additional studies on the long-term treatment of autoimmune and autoinflammatory dermatoses like psoriasis.
Collapse
Affiliation(s)
- Hayder Ridha Salman
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, 510001, Hillah, Babylon, Iraq.
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Qassim A Zigam
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, 510001, Hillah, Babylon, Iraq
| |
Collapse
|
2
|
Mallick Ganguly O, Moulik S. Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment. Dalton Trans 2023; 52:10639-10656. [PMID: 37475585 DOI: 10.1039/d3dt00659j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Manganese (Mn) is one of the most significant bio-metals that helps the body to form connective tissue, bones, blood clotting factors, and sex hormones. It is necessary for fat and carbohydrate metabolism, calcium absorption, blood sugar regulation, and normal brain and nerve functions. It accelerates the synthesis of proteins, vitamin C, and vitamin B. It is also involved in the catalysis of hematopoiesis, regulation of the endocrine level, and improvement of immune function. Again, Mn metalloenzymes like arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase, and Mn superoxide dismutase (MnSOD) contribute to the metabolism processes and reduce oxidative stress against free radicals. Recent investigations have revealed that synthetic Mn-complexes act as antibacterial and antifungal agents. As a result, chemists and biologists have been actively involved in developing Mn-based drugs for the treatment of various diseases including cancer. Therefore, any therapeutic drugs based on manganese complexes would be invaluable for the treatment of cancer/infectious diseases and could be a better substitute for cisplatin and other related platinum based chemotherapeutic drugs. From this perspective, attempts have been made to discuss the interactions and nuclease activities of Mn(II/III/IV) complexes with DNA through which one can evaluate their therapeutic applications.
Collapse
Affiliation(s)
- Oishi Mallick Ganguly
- St Xavier's College, 30, Park St, Mullick Bazar, Park Street area, Kolkata, West Bengal 700016, India
| | - Shuvojit Moulik
- Suraksha Diagnostics Pvt Ltd, Newtown 12/1, Premises No. 02-0327, DG Block(Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
3
|
Dehghani FS, Kalantari R, Rastegari B, Asadi Z. Water-soluble nickel (II) Schiff base complexes: Synthesis, structural characterization, DNA binding affinity, DNA cleavage, cytotoxicity, and computational studies. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:234-261. [PMID: 36106987 DOI: 10.1080/15257770.2022.2121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Two water-soluble nickel (II) Schiff base complexes were prepared and their interaction with fish sperm DNA (FS-DNA) was investigated by various methods including UV-vis spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and viscometric measurements. Complex 1: [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl] salicylidine}-3,4-diaminobenzophenone]nickel(II) perchloride dihydrate: [Ni(5-CH2PPh3-3,4-salophen)] (ClO4)2.2 H2O was synthesized as a new complex and characterized by elemental analysis, IR, 1H NMR, thermal gravimetric analysis (TGA) and UV-vis spectroscopy. Complex 2: sodium [(N,N'-bis(5-sulfosalicyliden)-3, 4-diaminobenzophenone)aqua] nickel(II) hydrate: Na2[Ni (5-SO3-3,4-salbenz)(H2O)]. H2O was already synthesized by our research team, but in this study, its function as a DNA-binding compound was tested, and compared with the results of complex 1-DNA binding. The calculation of different constants using absorption and emission data, all confirmed the stronger binding ability of complex 1 than complex 2 with DNA. Different thermodynamic parameters showed the interactions between DNA and complexes were the type of hydrophobic interaction for complex 1 and electrostatic interaction for complex 2. Also, the negative values of free energy changes proved a spontaneous DNA binding process. Based on cell toxicity assay against two different cell lines including Jurkat and MCF-7, the effect of complex 1 was comparable to cisplatin, and the toxicity mechanism was further justified by bright field microscopy, flow cytometry, and cleavage of DNA in the presence of H2O2. Besides, the docking calculations suggested intercalation after measuring the lowest-energy between the complexes and DNA. For both complexes, all analytical, spectroscopic, and molecular modeling methods supported partial intercalation as the main binding mode between the complexes and DNA.
Collapse
Affiliation(s)
| | - Razieh Kalantari
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Zahra Asadi
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Refat MS, Saad HA, Gobouri AA, Alsawat M, Adam AMA, Shakya S, Gaber A, Mohammed Alsuhaibani A, El-Megharbel SM. Synthesis and spectroscopic characterizations of nanostructured charge transfer complexes associated between moxifloxacin drug donor and metal chloride acceptors as a catalytic agent in a recycling of wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
He R, Zhang Z, Xu L, Chen W, Zhang M, Zhong Q, Chen H, Chen W. Antibacterial mechanism of linalool emulsion against Pseudomonas aeruginosa and its application to cold fresh beef. World J Microbiol Biotechnol 2022; 38:56. [PMID: 35165818 DOI: 10.1007/s11274-022-03233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.
Collapse
Affiliation(s)
- Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Zhengke Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Lilan Xu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Ming Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, People's Republic of China. .,Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Science, Wanning, Hainan, 571533, People's Republic of China.
| |
Collapse
|
6
|
Elshafie HS, Sadeek SA, Camele I, Mohamed AA. Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens. Int J Mol Sci 2022; 23:2110. [PMID: 35216223 PMCID: PMC8877648 DOI: 10.3390/ijms23042110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Four novel ligand-metal complexes were synthesized through the reaction of Fe(III), pleaseCo(II), Zn(II), and Zr(IV) with Schiff base gemifloxacin reacted with ortho-phenylenediamine (GMFX-o-phdn) to investigate their biological activities. Elemental analysis, FT-IR, 1H NMR, UV-visible, molar conductance, melting points, magnetic susceptibility, and thermal analyses have been carried out for insuring the chelation process. The antimicrobial activity was carried out against Monilinia fructicola, Aspergillus flavus, Penicillium italicum, Botrytis cinerea, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, and P. aeruginosa. The radical scavenging activity (RSA%) was in vitro evaluated using ABTS method. FT-IR spectra indicated that GMFX-o-phdn chelated with metal ions as a tetradentate through oxygen of carboxylate group and nitrogen of azomethine group. The data of infrared, 1H NMR, and molar conductivity indicate that GMFX-o-phdn reacted as neutral tetra dentate ligand (N2O2) with metal ions through the two oxygen atoms of the carboxylic group (oxygen containing negative charge) and two nitrogen atoms of azomethine group (each nitrogen containing a lone pair of electrons) (the absent of peak corresponding to ν(COOH) at 1715 cm-1, the shift of azomethine group peak from 1633 cm-1 to around 1570 cm-1, the signal at 11 ppm of COOH and the presence of the chloride ions outside the complex sphere). Thermal analyses (TG-DTG/DTA) exhibited that the decaying of the metal complexes exists in three steps with the final residue metal oxide. The obtained data from DTA curves reflect that the degradation processes were exothermic or endothermic. Results showed that some of the studied complexes exhibited promising antifungal activity against most of the tested fungal pathogens, whereas they showed higher antibacterial activity against E. coli and B. cereus and low activity against P. fluorescens and P. aeruginosa. In addition, GMFX-o-phdn and its metal complexes showed strong antioxidant effect. In particular, the parent ligand and Fe(III) complex showed greater antioxidant capacity at low tested concentrations than that of other metal complexes where their IC50 were 169.7 and 164.6 µg/mL, respectively.
Collapse
Affiliation(s)
- Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Sadeek A. Sadeek
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Amira A. Mohamed
- Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Zagazig 44519, Egypt;
| |
Collapse
|
7
|
Soltani S, Akhbari K. Embedding an extraordinary amount of gemifloxacin antibiotic in ZIF-8 framework with one-step synthesis and measurement of its H 2O 2-sensitive release and potency against infectious bacteria. NEW J CHEM 2022. [DOI: 10.1039/d2nj02981b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GEM@ZIF-8 has DLC = 69.82% and DLE = 89.03%, with controlled release dependent on H2O2 concentration, and it shows significant antibacterial activity.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, P.O. Box 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, P.O. Box 14155-6455, Iran
| |
Collapse
|
8
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|