1
|
Feßner M, Bloino J, Merten C. Matrix-isolation IR spectra of iodotrifluoroethylene (C 2F 3I). Phys Chem Chem Phys 2025; 27:8377-8384. [PMID: 40190240 DOI: 10.1039/d5cp00292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The infrared spectra of iodotrifluoroethylene (ITFE) recorded under matrix-isolation (MI) conditions in para-hydrogen, neon and argon were investigated. The experimental spectra were analyzed by comparison with computed anharmonic spectra obtained in the second-order vibrational perturbation theory (VPT2) framework at the MP2 and revDSD-PBEP86-D3BJ levels of theory. In para-hydrogen and neon matrices, the experimentally observable bands in the range of 1800-650 cm-1 could be assigned to vibrational transitions of monomeric ITFE. The spectral resolution even allowed assignments of transitions arising from 13C-isotopologues and the observation of various higher-order resonances in the range up to ∼3550 cm-1. A comprehensive series of MI experiments in argon obtained by varying several experimental parameters revealed a dependence of the spectra on the deposition temperature. The spectra generally showed strong site-splitting effects due to the existence of different local environments around the ITFE molecule. Detailed analysis of the experimental spectra resulted in the identification of bands which are differently affected by matrix annealing. This observation led to the conclusion that ITFE occupies two major matrix sites of different stability. Calculations on ITFE dimers confirmed that spectral changes during annealing are due to the formation of dimers, which are stabilized through π-π interactions.
Collapse
Affiliation(s)
- Malte Feßner
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Julien Bloino
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
2
|
Mahapatra N, Chandra S, Ramanathan N, Sundararajan K. Structural Elucidation of N 2O Clusters at Low Temperatures: Exemplary Framework Stabilized by π-Hole-Driven N···O and N···N Pnicogen Bonding Interactions. J Phys Chem A 2024; 128:4623-4637. [PMID: 38867592 DOI: 10.1021/acs.jpca.4c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
N2O is a classic prototype, in which central nitrogen is sufficiently electropositive with a positive potential of 20 kcal mol-1 in magnitude to qualify it as a possible pnicogen. This was applied to a test with N2O clusters using ab initio calculations in association with various molecular topographic tools. The structure of the energetically dominant and N2O dimer was in favor of a perpendicular geometry, where the central nitrogen atom of the N2O submolecule assumed a near 90° angle with the adjacent N═O and/or N═N moiety, which provides the affirmation of central nitrogen as a possible π-hole-driven pnicogen. The terminal nitrogen and oxygen atoms of N2O continue to act as conventional electron donors (Lewis bases) with a negative potential. Overall, predominant π-hole-driven N···O and N···N pnicogen bonding interactions were observed to stabilize N2O clusters. Furthermore, N2O clusters (dimers and trimers) were synthesized at low temperatures in an Ar matrix using molecular beam (effusive and supersonic expansion) experiments. The geometries of these clusters were characterized by probing infrared spectroscopy with corroboration from ab initio computational methods. In addition to our previously investigated nitromethane and nitrobenzene systems, N2O also makes it to a pnicogen bonder's club with the central nitrogen as a π-hole-driven pnicogen.
Collapse
Affiliation(s)
- Nandalal Mahapatra
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| | - Swaroop Chandra
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| | - Nagarajan Ramanathan
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| | - Kalyanasundaram Sundararajan
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| |
Collapse
|
3
|
Suryaprasad B, Chandra S, Ramanathan N, Sundararajan K. Unique Dispersion-Induced Tetrel Bond with Co-operative σ-hole-Induced Pnicogen Bond in the POCl 3-Acetone Heterodimer: Experimental Confirmation at Low Temperatures. J Phys Chem A 2022; 126:6637-6647. [PMID: 36126354 DOI: 10.1021/acs.jpca.2c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both tetrel and pnicogen bonds are known to be induced through σ-/π-holes. This work reports computational and experimental evidence of the carbonyl carbon of acetone hosting a tetrel bond by dispersion rather electrostatic forces, for the first time, while phosphorus of POCl3 sustains pnicogen bonding via the σ-hole. Heterodimers of POCl3 with acetone (CH3COCH3) have been isolated within inert gas matrixes of Ar and N2 at 12 K. Characteristic vibrational bands at P═O stretching of POCl3 and C═O stretching of CH3COCH3 have been obtained in support of the computations. The potential energy surface has been traced computationally using ab initio and density functional methods. CH3COCH3 harboring such a tetrel bond, in itself, is quite intriguing. The interplay of these interactions has been comprehended by the quantum theory of atoms in molecules, natural bond orbital, energy decomposition, electrostatic potential mapping, and noncovalent interaction analyses.
Collapse
Affiliation(s)
- Bodda Suryaprasad
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Swaroop Chandra
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nagarajan Ramanathan
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kalyanasundaram Sundararajan
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Mahapatra N, Chandra S, Ramanathan N, Sundararajan K. Experimental proof for σ and π-hole driven dual pnicogen bonding in phosphoryl chloride-nitromethane heterodimers: A combined matrix isolation infrared and ab initio computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Ren B, Shi Y, Lu Y, Xu Z, Liu H. Double pentavalent pnictogen-bonding interactions in the homodimers of pnictogenoxide species: CSD search and theoretical study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Chandra S, Suryaprasad B, Ramanathan N, Sundararajan K. Nitrogen as a pnicogen?: evidence for π-hole driven novel pnicogen bonding interactions in nitromethane-ammonia aggregates using matrix isolation infrared spectroscopy and ab initio computations. Phys Chem Chem Phys 2021; 23:6286-6297. [PMID: 33688865 DOI: 10.1039/d0cp06273a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nitrogen, the first member of the pnicogen group, as an electron donor in hypervalent non-covalent interactions has been established long ago, while observation of its electron accepting capability is still elusive experimentally, and remains quite intriguing, conceptually. In the light of minimal computational exploration of this novel class of pnicogen bonding so far, the present work provides experimental proof with unprecedented clarity, for the existence of N(acceptor)N(donor) interaction using the model nitromethane (NM) molecule with ammonia (AM) as a Lewis base in NM-AM aggregates. The NM-AM dimer, in which the nitrogen atom of NM (as a unique pnicogen) accepts electrons from AM (the traditional electron donor), was synthesized at low temperatures under isolated conditions within inert gas matrixes and was characterized using infrared spectroscopy. The experimental generation of the NM-AM dimer stabilized via NN interaction has strong corroboration from ab initio calculations. Furthermore, confirmation regarding the directional prevalence of this NN interaction over C-HN and N-HO hydrogen bonding is elucidated quantitatively by quantum theory of atoms in molecules (QTAIM), electrostatic potential mapping (ESP), natural bond orbital (NBO), non-covalent interaction (NCI) and energy decomposition (ED) analyses. The present study also allows the extension of σ-hole/π-hole driven interactions to the atoms of the second period, in spite of their low polarizability.
Collapse
Affiliation(s)
- Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - B Suryaprasad
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| |
Collapse
|
7
|
Sruthi PK, Chandra S, Ramanathan N, Sundararajan K. Unusual blue to red shifting of C-H stretching frequency of CHCl 3 in co-operatively P⋯Cl phosphorus bonded POCl 3-CHCl 3 heterodimers at low temperature inert matrixes. J Chem Phys 2020; 153:174305. [PMID: 33167652 DOI: 10.1063/5.0031162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterodimers of POCl3-CHCl3 were generated in Ne, Ar, and Kr matrixes at low temperatures and were studied using infrared spectroscopy. The remarkable role of co-operative pentavalent phosphorus bonding in the stabilization of the structure dictated by hydrogen bonding is deciphered. The complete potential energy surface of the heterodimer was scanned by ab initio and density functional theory computational methodologies. The hydrogen bond between the phosphoryl oxygen of POCl3 and C-H group of CHCl3 in heterodimers induces a blue-shift in the C-H stretching frequency within the Ne matrix. However, in Ar and Kr matrixes, the C-H stretching frequency is exceptionally red-shifted in stark contrast with Ne. The plausibility of the Fermi resonance by the C-H stretching vibrational mode with higher order modes in the heterodimers has been eliminated as a possible cause within Ar and Kr matrixes by isotopic substitution (CDCl3) experiments. To evaluate the influence of matrixes as a possible cause of red-shift, self-consistent Iso-density polarized continuum reaction field model was applied. This conveyed the important role of the dielectric matrixes in inducing the fascinating vibrational shift from blue (Ne) to red (Ar and Kr) due to the matrix specific transmutation of the POCl3-CHCl3 structure. The heterodimer produced in the Ne matrix possesses a cyclic structure stabilized by hydrogen bonding with co-operative phosphorus bonding, while in Ar and Kr the generation of an acyclic open structure stabilized solely by hydrogen bonding is promoted. Compelling justification regarding the dispersion force based influence of matrix environments in addition to the well-known dielectric influence is presented.
Collapse
Affiliation(s)
- P K Sruthi
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| |
Collapse
|