1
|
Pandey R, Choudhary K, Prasad SR, Kumar P, Bisht P, Aishwarya D, Nikhil P, Kumar S, Peraman R, Kumar N. Mechanistic and metabolic exploration of neohesperidin against lung cancer cell lines through ROS-mediated mitochondrial apoptosis: An in-silico and in-vitro approach. Toxicol Appl Pharmacol 2025; 499:117350. [PMID: 40252982 DOI: 10.1016/j.taap.2025.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Lung cancer is a significant contributor to global mortality rates in the human population. However, the results of current treatment options are still unsatisfactory. Thus, the study explores low-toxic natural substances that release caspases and trigger apoptosis. Neohesperidin (NHP), a flavonoid, has anticancer efficacy although its molecular mechanism is unknown. In the current work, through in-silico and in-vitro screening, we discovered that NHP significantly reduces the expression of x-linked inhibitor of apoptosis protein (xIAP) and ATP on its administration, leading to apoptosis in human and mice lung (A549 and LLC-1) cancerous cells. Furthermore, NHP promoted the production of second-mitochondria-derived-activator-of-caspase (SMAC) and triggers mitochondrial dysfunction which also promotes apoptosis (51.1 %) as well as necrosis (25.8 %). This mechanism is regulated by mitochondria-mediated (Bax and Bcl-2) caspases-dependent apoptotic and ROS mediated pathway which increases SMAC expression by 21.2 % along with lowering the xIAP level (by 36.5 %). Moreover, network pharmacology was utilized to delineate the interactions of the compounds within biological networks, emphasizing their potential to target multiple pathways. In addition, we investigated the alterations in metabolites within A549 cells caused by NHP using liquid-chromatography-high-resolution-mass-spectrometry (LC-HRMS)-based metabolomics. The results revealed perturbations in metabolomes that are involved in multiple pathways. Therefore, this study indicates that NHP is a potential therapeutic agent to mitigate and control the proliferation of lung cancer and also regulates the energy metabolism.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, , Manipal, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Kiewhuo K, Priyadarsinee L, Sarma H, Sastry GN. Molecular dynamics simulations reveal the effect of mutations in the RING domains of BRCA1-BARD1 complex and its relevance to the prognosis of breast cancer. J Biomol Struct Dyn 2023; 41:12734-12752. [PMID: 36775657 DOI: 10.1080/07391102.2023.2175383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023]
Abstract
The N-terminal RING-RING domain of BRCA1-BARD1 is an E3 ubiquitin ligase complex that plays a critical role in tumor suppression through DNA double stranded repair mechanism. Mutations in the BRCA1-BARD1 heterodimer RING domains were found to have an association with breast and ovarian cancer by a way of hampering the E3 ubiquitin ligase activity. Herein, the molecular mechanism of interaction, conformational change due to the specific mutations on the BRCA1-BARD1 complex at atomic level has been examined by employing molecular modeling techniques. Sixteen mutations have been selected for the study. Molecular dynamics simulation results reveal that the mutant complexes have more local perturbation with a high residual fluctuation in the zinc binding sites and central helix. A few of the BRCA1 (V11A, I21V, I42V, R71G, I31M and L51W) mutants have been experimentally identified that do not impair E3 ligase activity, display an enhanced number of H-bonds and non-bonded contacts at the interacting interface as revealed by MD simulation. The mutation of BRCA1 (C61G, C64Y, C39Y and C24R) and BARD1 (C53W, C71Y and C83R) zinc binding residues displayed a smaller number of significant H-bonds, other interactions and also loss of some of the hotspot residues. Additionally, most of the mutant complexes display relatively lower electrostatic energy, H-bonding and total stabilizing energy as compared to wild-type. The current study attempts to unravel the role of BRCA1-BARD1 mutations and delineates the structural and conformational dynamics in the progression of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Zhao C, Zhang L, Hu Y, Nie C, Chen TT, Chu X. Simultaneous Imaging and Visualizing the Association of Survivin mRNA and Telomerase in Living Cells by Using a Dual-Color Encoded DNA Nanomachine. Anal Chem 2023; 95:1498-1504. [PMID: 36598384 DOI: 10.1021/acs.analchem.2c04531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Simultaneous imaging and especially visualizing the association of survivin mRNA and telomerase in living cells are of great value for the diagnosis and prognosis of cancer because their co-expression facilitates the development of cancer and identifies patients at high risk of tumor-related death. The challenge is to develop methods that enable visualizing the association of multiplex targets and avoid the distorted signals due to the different delivery efficiency of probes. Herein, we engineered a DNA triangular prism nanomachine (DTPN) for simultaneous multicolor imaging of survivin mRNA and telomerase and visualizing their association in living cells. Two recognizing probes targeted survivin mRNA and telomerase, and the reporter probe was assembled on the DTP in equal amounts, ensuring the same delivery efficiency of the probes to the living cells. The results showed that this DTPN could quantify intracellular survivin mRNA expression and telomerase activity. Moreover, it also enabled us to visualize the effect of the down-regulation of one target on the expression of another target under different drug stimulations. The results implied that our DTPN provided a promising platform for cancer diagnosis, prognosis, drug screening, and related biological research.
Collapse
Affiliation(s)
- Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
4
|
Martínez-Sifuentes MA, Bassol-Mayagoitia S, Nava-Hernández MP, Ruiz-Flores P, Ramos-Treviño J, Haro-Santa Cruz J, Hernández-Ibarra JA. Survivin in Breast Cancer: A Review. Genet Test Mol Biomarkers 2022; 26:411-421. [PMID: 36166738 DOI: 10.1089/gtmb.2021.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women and ranks second among causes for cancer-related death in women. Gene technology has led to the recognition that breast cancer is a heterogeneous disease composed of different biological subtypes, and genetic profiling enables the response to chemotherapy to be predicted. This fact emphasizes the importance of selecting sensitive diagnostic and prognostic markers in the early disease stage and more efficient targeted treatments for this disease. One such prognostic marker appears to be survivin. Many studies have shown that survivin is strongly expressed in different types of cancers. Its overexpression has been demonstrated in breast cancer, and high activity of the survivin gene has been associated with a poor prognosis and worse survival rates.
Collapse
Affiliation(s)
- Manuel Antonio Martínez-Sifuentes
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Susana Bassol-Mayagoitia
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Martha P Nava-Hernández
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Pablo Ruiz-Flores
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Juan Ramos-Treviño
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Jorge Haro-Santa Cruz
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - José Anselmo Hernández-Ibarra
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| |
Collapse
|
5
|
Sarma H, Sastry GN. A Computational Study on the Interaction of NSP10 and NSP14: Unraveling the RNA Synthesis Proofreading Mechanism in SARS-CoV-2, SARS-CoV, and MERS-CoV. ACS OMEGA 2022; 7:30003-30022. [PMID: 36035077 PMCID: PMC9397572 DOI: 10.1021/acsomega.2c03007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The interaction of exoribonuclease (ExoN) nonstructural protein (NSP14) with NSP10 co-factors is crucial for high-fidelity proofreading activity of coronavirus replication and transcription. Proofreading function is critical for maintaining the large genomes to ensure replication proficiency; therefore, while maintaining the viral replication fitness, quick resistance has been reported to the nucleotide analogue (NA) drugs. Therefore, targeting the NSP14 and NSP10 interacting interface with small molecules or peptides could be a better strategy to obstruct replication processes of coronaviruses (CoVs). A comparative study on the binding mechanism of NSP10 with the NSP14 ExoN domain of SARS-CoV-2, SARS-CoV, MERS-CoV, and four SARS-CoV-2 NSP14mutant complexes has been carried out. Protein-protein interaction (PPI) dynamics, per-residue binding free energy (BFE) analyses, and the identification of interface hotspot residues have been studied using molecular dynamics simulations and various computational tools. The BFE of the SARS-CoV NSP14-NSP10 complex was higher when compared to novel SARS-CoV-2 and MERS. However, SARS-CoV-2 NSP14mutant systems display a higher BFE as compared to the wild type (WT) but lower than SARS-CoV and MERS. Despite the high BFE, the SARS-CoV NSP14-NSP10 complex appears to be structurally more flexible in many regions especially the catalytic site, which is not seen in SARS-CoV-2 and its mutant or MERS complexes. The significantly high residue energy contribution of key interface residues and hotspots reveals that the high binding energy between NSP14 and NSP10 may enhance the functional activity of the proofreading complex, as the NSP10-NSP14 interaction is essential in maintaining the stability of the ExoN domain for the replicative fitness of CoVs. The factors discussed for SARS-CoV-2 complexes may be responsible for NSP14 ExoN having a high replication proficiency, significantly leading to the evolution of new variants of SARS-CoV-2. The NSP14 residues V66, T69, D126, and I201and eight residues of NSP10 (L16, F19, V21, V42, M44, H80, K93, and F96) are identified as common hotspots. Overall, the interface area, hotspot locations, bonded/nonbonded contacts, and energies between NSP14 and NSP10 may pave a way in designing potential inhibitors to disrupt NSP14-NSP10 interactions of CoVs especially SARS-CoV-2.
Collapse
Affiliation(s)
- Himakshi Sarma
- Advanced Computation and Data Sciences Division,
CSIR−North East Institute of Science and Technology,
Jorhat, Assam785006, India
| | - G. Narahari Sastry
- Advanced Computation and Data Sciences Division,
CSIR−North East Institute of Science and Technology,
Jorhat, Assam785006, India
- Academy of Scientific and Innovative
Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Dutta TK, Mandal A, Kundu A, Phani V, Mathur C, Veeresh A, Sreevathsa R. RNAi-mediated knockdown of gut receptor-like genes prohibitin and α-amylase altered the susceptibility of Galleria mellonella to Cry1AcF toxin. BMC Genomics 2022; 23:601. [PMID: 35982422 PMCID: PMC9389788 DOI: 10.1186/s12864-022-08843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Due to the prolonged usage of Bt-based biopesticides and Bt-transgenic crops worldwide, insects are continually developing resistance against Cry toxins. This resistance may occur if any mechanistic step in the insecticidal process is disrupted possibly because of the alteration in Cry-receptor binding affinity due to mutation in receptor genes. Compared to other lepidopteran insects, Cry receptor-related research has made asymmetric progress in the model insect Galleria mellonella. Results Present study describes the molecular characterization and functional analysis of five Cry toxin receptor-related genes (prohibitin, GLTP, α-amylase, ADAM and UDP-GT) and a gut repair gene (arylphorin) from the gut tissues of G. mellonella. Protein–protein docking analysis revealed that Cry1AcF putatively binds with all the five candidate proteins, suggesting their receptor-like function. These receptor-like genes were significantly overexpressed in the gut tissues of fourth-instar G. mellonella larvae upon early exposure to a sub-lethal dose of Cry1AcF toxin. However, targeted knockdown (by using bacterially-expressed dsRNAs) of these genes led to variable effect on insect susceptibility to Cry1AcF toxin. Insects pre-treated with prohibitin and α-amylase dsRNA exhibited significant reduction in Cry1AcF-induced mortality, suggesting their probable role as Cry receptor. By contrast, insects pre-treated with GLTP, ADAM and UDP-GT dsRNA exhibited no significant decline in mortality. This maybe explained by the possibility of RNAi feedback regulation (as few of the receptors belong to multigene family) or redundant role of GLTP, ADAM and UDP-GT in Cry intoxication process. Conclusion Since the laboratory culture of G. mellonella develop Bt resistance quite rapidly, findings of the current investigation may provide some useful information for future Cry receptor-related research in the model insect. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08843-8.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, Balurghat, West Bengal, India
| | - Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arudhimath Veeresh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| |
Collapse
|
7
|
Sarma H, Jamir E, Sastry GN. Protein-protein interaction of RdRp with its co-factor NSP8 and NSP7 to decipher the interface hotspot residues for drug targeting: A comparison between SARS-CoV-2 and SARS-CoV. J Mol Struct 2022; 1257:132602. [PMID: 35153334 PMCID: PMC8824464 DOI: 10.1016/j.molstruc.2022.132602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/09/2023]
Abstract
In this study we explored the molecular mechanism of RdRp (Non-Structural Protein, NSP12) interaction with its co-factors NSP7 and NSP8 which is the main toolbox for RNA replication and transcription of SARS-CoV-2 and SARS-CoV. The replication complex is a heterotetramer consists of one NSP12, one NSP7 and two NSP8. Extensive molecular dynamics (MD) simulations were applied on both the heterotetramer complexes to generate the conformations and were used to estimate the MMPBSA binding free energy (BFE) and per-residue energy decomposition of NSP12-NSP8 and NSP12-NSP7 and NSP7-NSP8 complexes. The BFE of SARS-CoV-2 heterotetramer complex with its corresponding partner protein was significantly higher as compared to SARS-CoV. Interface hotspot residues were predicted using different methods implemented in KFC (Knowledge-based FADA and Contracts), HotRegion and Robetta web servers. Per-residue energy decomposition analysis showed that the predicted interface hotspot residues contribute more energy towards the formation of complexes and most of the predicted hotspot residues are clustered together. However, there is a slight difference in the residue-wise energy contribution in the interface NSPs on heterotetramer viral replication complex of both coronaviruses. While the overall replication complex of SARS-CoV-2 was found to be slightly flexible as compared to SARS-CoV. This difference in terms of structural flexibility/stability and energetic characteristics of interface residues including hotspots at PPI interface in the viral replication complexes may be the reason of higher rate of RNA replication of SARS-CoV-2 as compared to SARS-CoV. Overall, the interaction profile at PPI interface such as, interface area, hotspot residues, nature of bonds and energies between NSPs, may provide valuable insights in designing of small molecules or peptide/peptidomimetic ligands which can fit into the PPI interface to disrupt the interaction.
Collapse
Affiliation(s)
- Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India
| | - Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|