1
|
Nazir MS, Ahmad M, Aslam S, Rafiq A, Al-Hussain SA, Zaki MEA. A Comprehensive Update of Anti-COVID-19 Activity of Heterocyclic Compounds. Drug Des Devel Ther 2024; 18:1547-1571. [PMID: 38737333 PMCID: PMC11088867 DOI: 10.2147/dddt.s450499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 05/14/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
El Bakri Y, Ahmad B, Saravanan K, Ahmad I, Bakhite EA, Younis O, Al-Waleedy SAH, Ibrahim OF, Nafady A, Mague JT, Mohamed SK. Insight into crystal structures and identification of potential styrylthieno[2,3- b]pyridine-2-carboxamidederivatives against COVID-19 Mpro through structure-guided modeling and simulation approach. J Biomol Struct Dyn 2024; 42:4325-4343. [PMID: 37318002 DOI: 10.1080/07391102.2023.2220799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Basharat Ahmad
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama Younis
- Chemistry Department, Faculty of Science, the New Valley University, El-Kharja, Egypt
| | | | - Omaima F Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
3
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
4
|
Shaaban S, Abdou A, Alhamzani AG, Abou-Krisha MM, Al-Qudah MA, Alaasar M, Youssef I, Yousef TA. Synthesis and in Silico Investigation of Organoselenium-Clubbed Schiff Bases as Potential Mpro Inhibitors for the SARS-CoV-2 Replication. Life (Basel) 2023; 13:life13040912. [PMID: 37109441 PMCID: PMC10141725 DOI: 10.3390/life13040912] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Since the first report of the organoselenium compound, ebselen, as a potent inhibitor of the SARS-CoV-2 Mpro main protease by Z. Jin et al. (Nature, 2020), different OSe analogs have been developed and evaluated for their anti-COVID-19 activities. Herein, organoselenium-clubbed Schiff bases were synthesized in good yields (up to 87%) and characterized using different spectroscopic techniques. Their geometries were studied by DFT using the B3LYP/6–311 (d, p) approach. Ten FDA-approved drugs targeting COVID-19 were used as model pharmacophores to interpret the binding requirements of COVID-19 inhibitors. The antiviral efficiency of the novel organoselenium compounds was assessed by molecular docking against the 6LU7 protein to investigate their possible interactions. Our results showed that the COVID-19 primary protease bound to organoselenium ligands with high binding energy scores ranging from −8.19 to −7.33 Kcal/mol for 4c and 4a to −6.10 to −6.20 Kcal/mol for 6b and 6a. Furthermore, the docking data showed that 4c and 4a are good Mpro inhibitors. Moreover, the drug-likeness studies, including Lipinski’s rule and ADMET properties, were also assessed. Interestingly, the organoselenium candidates manifested solid pharmacokinetic qualities in the ADMET studies. Overall, the results demonstrated that the organoselenium-based Schiff bases might serve as possible drugs for the COVID-19 epidemic.
Collapse
|
5
|
Yousif QA, Majeed MN, Bedair MA. Surface protection against corrosion of Ni turbine blades by electrophoretic deposition of MnO 2, TiO 2 and TiO 2-C nanocoating. RSC Adv 2022; 12:33725-33736. [PMID: 36505697 PMCID: PMC9685372 DOI: 10.1039/d2ra06949k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The turbine blades of turbochargers are corroded after being cleaned with water in the presence of gasses produced during the combustion of heavy fuel. For that, manganese oxide (MnO2), titanium dioxide (TiO2), and titanium oxide-graphene (TiO2-C) nanomaterials have been coated on the nickel alloy, which is the composition of turbine blades, by the electrophoretic deposition technique for protection against the corrosion process. The anticorrosion performance of nanomaterial coatings has been investigated using electrochemical methods such as open circuit potential, potentiodynamic, electrochemical impedance, and linear polarization resistance in a 1 M H2SO4 solution saturated with carbon dioxide. The corrosion rate of nanomaterial-coated Ni-alloy was lower than bare alloy, and potential corrosion increased from -0.486 V for uncoated Ni-alloy to -0.252 V versus saturated calomel electrode for nanomaterial coated Ni-alloy electrodes. Electrochemical measurements show that TiO2 coated Ni-alloy corrosion has good protective qualities, with an efficiency of 99.91% at 0.146 mA cm2 current density in sulfuric acid media. The findings of this study clearly show that TiO2 has a high potential to prevent nickel alloy turbine blades from corrosion in acidic media. Furthermore, the surface morphologies have revealed that TiO2 and MnO2 coatings might successfully block an acid assault due to the high adhesion of the protective layer on the nickel alloy surface. The use of X-ray diffraction (XRD) enhanced the various measures used to determine and study the composition of the alloy surface's protective coating.
Collapse
Affiliation(s)
- Qahtan A Yousif
- University of Al-Qadisiyah, College of Engineering, Department of Materials Engineering Iraq
| | - Mohammad N Majeed
- Electric Power Generation Department of Kufa Cement Plant/Processing and Laboratory Research Iraq
| | - Mahmoud A Bedair
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
6
|
Elaryian HM, Bedair MA, Bedair AH, Aboushahba RM, Fouda AEAS. Corrosion mitigation for steel in acid environment using novel p-phenylenediamine and benzidine coumarin derivatives: synthesis, electrochemical, computational and SRB biological resistivity. RSC Adv 2022; 12:29350-29374. [PMID: 36320746 PMCID: PMC9558558 DOI: 10.1039/d2ra05803k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Three novel p-phenylenediamine and benzidine coumarin derivatives were synthetized, namely: 4,4'-((((1,4-phenylenebis(azaneylylidene))bis(ethan-1-yl-1-ylidene))bis(2-oxo-2H-chromene-3,6-diyl))bis(diazene-2,1-diyl))dibenzenesulfonic acid (PhODB), 4,4'-(((-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))bis(ethan-1-yl-1-ylidene))bis(2-oxo-2H-chromene-3,6-diyl))bis(diazene-2,1-diyl))dibenzenesulfonic acid (BODB) and 4,4'-(((-((3,3'-dimethoxy-[1,1'-biphenyl]-4,4'-diyl)bis(azaneylylidene))bis(ethan-1-yl-1-ylidene))bis(2-oxo-2H-chromene-3,6-iyl))bis(diazene-2,1-diyl))dibenzenesulfonic acid (DODB). Their chemical structures were proved by performing Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance and mass spectrometry analysis. The synthesized p-phenylenediamine and benzidine coumarin derivatives were tested as corrosion inhibitors for mild steel (MS) in 1 M HCl solution using weight loss, electrochemical, morphological, and theoretical studies. The compound 3,3'-dimethoxy benzidine coumarin derivative (DODB) was proved to give the highest efficiency with 94.98% obtained from weight loss measurements. These compounds are mixed inhibitors, as seen by the polarization curves. Impedance diagrams showed that when the concentration of these derivatives rose, the double-layer capacitance fell and the charge transfer resistance increased. Calculated thermodynamic parameters were computed and the mechanism of adsorption was also studied for the synthesized p-phenylenediamine and benzidine coumarin derivatives. The ability of the synthesized derivatives to protect the surface against corrosion was investigated by scanning electron microscope (SEM), UV-visible spectroscopy and energy dispersive X-ray spectroscopy (EDX). Theoretical chemical calculations (DFT) and biological resistivity (SRB) were investigated.
Collapse
Affiliation(s)
- Hani M Elaryian
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
- Zohr Gas Field, Belayim Petroleum Company Nasr City 7074 Cairo Egypt
| | - Mahmoud A Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
| | - Ahmed H Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Rabab M Aboushahba
- Department of Chemistry, Faculty of Science (Girls' Branch), Al-Azhar University, Nasr City 11574 Cairo Egypt
| | - Abd El-Aziz S Fouda
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| |
Collapse
|
7
|
Hojjati A, Mansournia M. Synthesis, characterization, theoretical study and anticancer application of a new asymmetric ligand, N‐trans‐cinnamylidene‐1,2‐phenylenediamine, and its complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmad Hojjati
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| | - Mohammadreza Mansournia
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| |
Collapse
|
8
|
El-Lateef HMA, El-Dabea T, Khalaf MM, Abu-Dief AM. Development of Metal Complexes for Treatment of Coronaviruses. Int J Mol Sci 2022; 23:6418. [PMID: 35742870 PMCID: PMC9223400 DOI: 10.3390/ijms23126418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease (SARS-CoV-2) is a global epidemic. This pandemic, which has been linked to high rates of death, has forced some countries throughout the world to implement complete lockdowns in order to contain the spread of infection. Because of the advent of new coronavirus variants, it is critical to find effective treatments and vaccines to prevent the virus's rapid spread over the world. In this regard, metal complexes have attained immense interest as antibody modifiers and antiviral therapies, and they have a lot of promise towards SARS-CoV-2 and their suggested mechanisms of action are discussed, i.e., a new series of metal complexes' medicinal vital role in treatment of specific proteins or SARS-CoV-2 are described. The structures of the obtained metal complexes were fully elucidated by different analytical and spectroscopic techniques also. Molecular docking and pharmacophore studies presented that most of complexes studied influenced good binding affinity to the main protease SARS-CoV-2, which also was attained as from the RCSB pdb (Protein Data Bank) data PDB ID: 6 W41, to expect the action of metal complexes in contradiction of COVID-19. Experimental research is required to determine the pharmacokinetics of most of the complexes analyzed for the treatment of SARS-CoV-2-related disease. Finally, the toxicity of a metal-containing inorganic complex will thus be discussed by its capability to transfer metals which may bind with targeted site.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
- Chemistry Department, College of Science, Taibah University, Madinah 344, Saudi Arabia
| |
Collapse
|
9
|
Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The rapid growth and revolution in the area of emerging therapeutics has been able to save the life of millions of patients globally. Besides these developments, the microbes are consistently struggling for their own survival and hence becoming quite more sturdy and incurable to existing drugs. Covid-19 virus and Black Fungus are recent examples of failure of medical preparations and strength of these viruses beyond the imagination of medical practitioners. Henceforth the study has made an extensive survey of exiting literature on heterocyclic schiff bases and their transition metal complexes to look for their potential applicability as antimicrobial agents. The inherent physiognomies of the essential properties of these transition metal complexes including thermodynamic, kinetic and chelating are comparatively modifiable as per requirements. The study has found that the biological applications of these transition metal complexes are well suited to be used as antibacterial and antifungal agents.
Collapse
|
10
|
Gohain SB, Boruah PK, Das MR, Thakur AJ. Gold-coated iron oxide core–shell nanostructures for the oxidation of indoles and the synthesis of uracil-derived spirooxindoles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of isatins and uracil-based spirooxindoles catalysed by Au/Fe3O4 core–shell nanoparticles under mild conditions and low reaction times.
Collapse
Affiliation(s)
| | - Purna Kanta Boruah
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Manash Ranjan Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
11
|
Synthesis, crystal structure, computational study and anti-virus effect of mixed ligand copper (II) complex with ONS donor Schiff base and 1, 10-phenanthroline. J Mol Struct 2021; 1246:131246. [PMID: 34658419 PMCID: PMC8510892 DOI: 10.1016/j.molstruc.2021.131246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
This work deals with the synthesis, crystal structure, computational study and antiviral potential of mixed ligand copper(II) complex [Cu(L)(phen)](1), (where, H2L = (Z)-N'-((E)-2-hydroxy-3,5-diiodobenzylidene)-N,N-dimethylcarbamohydrazonothioic acid, phen = 1,10-phenanthroline). The Schiff base ligand (H2L) is coordinated with Cu(II) ion in O, N, S-tridentate mode. The copper complex (1) crystallized in the monoclinic system of the space group P21/c with eight molecules in the unit cell and reveals a square pyramidal geometry. Furthermore, we also perform quantum chemical calculations to get insights into the structure-property relationship and functional properties of ligand (H2L) and its copper (II) complex [Cu(L)(phen)](1). Complex [Cu(L)(phen)](1) was also virtually designed in-silico evaluation by Swiss-ADME. Additionally, inspiring by recent developments to find a potential inhibitor for the COVID-19 virus, we have also performed molecular docking study of ligand and its copper complex (1) to see if our compounds shows an affinity for the main protease (Mpro) of COVID-19 spike protein (PDB ID: 7C8U). Interestingly, the results are found quite encouraging where the binding affinity and inhibition constant were found to be -7.14 kcal/mol and 5.82 μM for ligand (H2L) and -6.18 kcal/mol and 0.76 μM for complex [Cu(L)(phen)](1) with Mpro protein. This binding affinity is reasonably well as compared to recently known antiviral drugs. For instance, the binding affinity of ligand and complex was found to be better than docking results of chloroquine (-6.293 kcal/mol), hydroxychloroquine (-5.573 kcal/mol) and remdesivir (-6.352 kcal/mol) with Mpro protein. The present study may offer the technological solutions and potential inhibition to the COVID-19 virus in the ongoing and future challenges of the global community. In the framework of synthesis and characterization of mixed ligand copper (II) complex; the major conclusions can be drawn as follow.
Collapse
|
12
|
Seliem IA, Panda SS, Girgis AS, Moatasim Y, Kandeil A, Mostafa A, Ali MA, Nossier ES, Rasslan F, Srour AM, Sakhuja R, Ibrahim TS, Abdel-Samii ZKM, Al-Mahmoudy AMM. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105117. [PMID: 34214752 PMCID: PMC8219945 DOI: 10.1016/j.bioorg.2021.105117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 06/19/2021] [Indexed: 01/25/2023]
Abstract
At present therapeutic options for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are very limited. We designed and synthesized three sets of small molecules using quinoline scaffolds. A series of quinoline conjugates (10a-l, 11a-c, and 12a-e) by incorporating 1,2,3-triazole were synthesized via a modified microwave-assisted click chemistry technique. Among the synthesized conjugates, 4-((1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-6-fluoro-2-(trifluoromethyl)quinoline (10g) and 6-fluoro-4-(2-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)ethoxy)-2-(trifluoromethyl)quinoline (12c) show high potency against SARS-CoV-2. The selectivity index (SI) of compounds 10g and 12c also indicates the significant efficacy compared to the reference drugs.
Collapse
Affiliation(s)
- Israa A Seliem
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA.
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, India
| | - Tarek S Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zakaria K M Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amany M M Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|