1
|
Gaber W, Shehata N, El-Sherbeeny AM, Al Zoubi W, Mehaney A, Abukhadra MR. Facile exfoliation of natural talc into separated mesoporous magnesium silicate nano-sheets for effective sequestration of phosphate and nitrate ions: characterization and advanced modeling. Front Chem 2025; 13:1571723. [PMID: 40303846 PMCID: PMC12037480 DOI: 10.3389/fchem.2025.1571723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Magnesium silicate nano-sheets were synthesized from natural talc by facile exfoliation and delamination methods as exfoliated product (EXTC) of 29.5 nm average pore diamter, enhanced surface area (103 m2/g), and adsorption perforamnces. The sucessful development of EXTC particles was followed based on different techniques and applied in effective sequestration of PO4 3- and NO3 - ions from water. The EXTC product as adsorbent demonstrates remarkable effectiveness for both PO4 3- (257.9 mg/g) and NO3 - (164.2 mg/g) as compared to several studied structures. Depending on the steric analysis of Monolayer equilibrium model, the interface of EXTC highly saturated with interactive receptors for the both ions but with higher abundant for PO4 3- (151.5 mg/g) as compared to NO3 - (61.5 mg/g). This resulted in higher aggregation effect during the uptake of NO3 - (4 ions per site) than PO4 3- (3 ions per site) which also donate the vertical orientation of these adsorbed ions and operation of multi-ionic sequestration mechanisms. The structure is highly recyclable and of significant safety and cane be applied in its spent or exhausted state as fertilizer. The energetic evaluation considering the Gaussian energy (<8.5 kJ/mol) as well as the sequestration energy (<4 kJ/mol), suggested the predominant impact of physical mechanisms (hydrogen bonds and electrostatic attraction), in addition to the impact of the weak chemical complexation. Furthermore, the thermodynamic functions declare the retention of these ions into the framework of EXTC by exothermic and spontaneous reactions.
Collapse
Affiliation(s)
- Walaa Gaber
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R. Abukhadra
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
2
|
Coutinho R, Hoshima HY, Vianna MTG, Marques M. Sustainable application of modified Luffa cylindrica biomass for removal of trimethoprim in water by adsorption with process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55280-55300. [PMID: 39227535 DOI: 10.1007/s11356-024-34797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.
Collapse
Affiliation(s)
- Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Henrique Yahagi Hoshima
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marco Tadeu Gomes Vianna
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Prakalathan D, Kavitha G, Kumar GD. Bioinspired copper oxide nanocomposites: harnessing plant extracts for enhanced photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51415-51430. [PMID: 39112896 DOI: 10.1007/s11356-024-34646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
This study focuses on developing copper oxide-based nanocomposites using plant extracts for photocatalytic applications. Curcuma amada leaf and Alysicarpus vaginalis leaf extracts were utilized alongside recycled copper precursors to synthesize photocatalysts via a green synthesis approach. Structural characterization through X-ray diffraction confirmed the formation of monoclinic CuO with reduced crystallite sizes due to plant extract incorporation. Fourier-transform infrared spectroscopy identified additional functional groups from the plant extracts, enhancing the material's properties. UV-Vis spectroscopy demonstrated increased light absorption and narrowed bandgaps in the nanocomposites, crucial for efficient photocatalysis under visible light. Morphological studies using FESEM revealed unique leaf-like structures in nanocomposites, indicative of the plant extract's influence on morphology. Photocatalytic degradation of methylene blue, rhodamine B, Congo red, and reactive blue 171 dyes showed enhanced performance of plant extract-modified CuO compared to without plant extract mediated CuO, attributed to improved charge carrier separation and extended lifetime. The effects of pH, catalyst dosage, and dye concentration on degradation efficiency were systematically investigated, highlighting optimal conditions for each dye type. Radical scavenger studies confirmed the roles of holes and hydroxyl radicals in the degradation process. Kinetic analysis revealed pseudo-second-order kinetics for dye degradation, underscoring the effectiveness of the nanocomposites. Overall, this research provides insights into sustainable photocatalytic materials using plant extracts and recycled copper, showcasing their potential for environmental remediation applications.
Collapse
Affiliation(s)
- Duraisamy Prakalathan
- Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India
| | - Gurusamy Kavitha
- Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India.
| | - Ganeshan Dinesh Kumar
- Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India
| |
Collapse
|
4
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
5
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
6
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Polymer-based nanocomposite adsorbents for resource recovery from wastewater. RSC Adv 2023; 13:31687-31703. [PMID: 37908667 PMCID: PMC10613956 DOI: 10.1039/d3ra05453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Developing mitigation mechanisms for eutrophication caused by the uncontrolled release of nutrients is in the interest of the scientific community. Adsorption, being operationally simple and economical with no significant secondary pollution, has proven to be a feasible technology for resource recovery. However, the utility of adsorption often lies in the availability of effective adsorbents. In this regard, polymer-based nanocomposite (PNC) adsorbents have been highly acclaimed by researchers because of their high surface area, multiple functional groups, biodegradability, and ease of large-scale production. This review paper elaborates on the functionality, adsorption mechanisms, and factors that affect the adsorption and adsorption-desorption cycles of PNC adsorbents toward nutrient resources. Moreover, this review gives insight into the application of recovered nutrient resources in soil amendment.
Collapse
Affiliation(s)
- Aminat Mohammed Ahmed
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural Sciences, Wollo University P.O. Box 1145, Dessie Ethiopia
| | - Menbere Leul Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University P.O. Box 231 Mekelle Ethiopia
| |
Collapse
|
7
|
Bazrafshan E, Mohammadi L, Zarei AA, Mosafer J, Zafar MN, Dargahi A. Optimization of the photocatalytic degradation of phenol using superparamagnetic iron oxide (Fe 3O 4) nanoparticles in aqueous solutions. RSC Adv 2023; 13:25408-25424. [PMID: 37636498 PMCID: PMC10448231 DOI: 10.1039/d3ra03612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
The present work was carried out to remove phenol from aqueous medium using a photocatalytic process with superparamagnetic iron oxide nanoparticles (Fe3O4) called SPIONs. The photocatalytic process was optimized using a central composite design based on the response surface methodology. The effects of pH (3-7), UV/SPION nanoparticles ratio (1-3), contact time (30-90 minutes), and initial phenol concentration (20-80 mg L-1) on the photocatalytic process were investigated. The interaction of the process parameters and their optimal conditions were determined using CCD. The statistical data were analyzed using a one-way analysis of variance. We developed a quadratic model using a central composite design to indicate the photocatalyst impact on the decomposition of phenol. There was a close similarity between the empirical values gained for the phenol content and the predicted response values. Considering the design, optimum values of pH, phenol concentration, UV/SPION ratio, and contact time were determined to be 3, 80 mg L-1, 3, and 60 min, respectively; 94.9% of phenol was eliminated under the mentioned conditions. Since high values were obtained for the adjusted R2 (0.9786) and determination coefficient (R2 = 0.9875), the response surface methodology can describe the phenol removal by the use of the photocatalytic process. According to the one-way analysis of variance results, the quadratic model obtained by RSM is statistically significant for removing phenol. The recyclability of 92% after four consecutive cycles indicates the excellent stability of the photocatalyst for practical applications. Our research findings indicate that it is possible to employ response surface methodology as a helpful tool to optimize and modify process parameters for maximizing phenol removal from aqueous solutions and photocatalytic processes using SPIONs.
Collapse
Affiliation(s)
- Edris Bazrafshan
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh 33787 95196 Iran
- Department of Environmental Health Engineering, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh 33787 95196 Iran
| | - Leili Mohammadi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Amin Allah Zarei
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh 33787 95196 Iran
- Department of Environmental Health Engineering, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh 33787 95196 Iran
| | - Jafar Mosafer
- Department of Environmental Health Engineering, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh 33787 95196 Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh Iran
| | | | - Abdollah Dargahi
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences Khalkhal Iran
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences Ardabil Iran
| |
Collapse
|
8
|
Ranjbar M, Khakdan F, Mukherjee A. In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60180-60195. [PMID: 37017848 DOI: 10.1007/s11356-023-26706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Tanacetum parthenium L. is a popular traditional medicinal plant that the role of presence of particular phytochemical compounds are still unconsidered particularly in the bio-nano researches. Here, for the first time, the green fabrication of CuO NPs using Tanacetum parthenium L. extract was performed and assessed for the antimicrobial, cytotoxicity, and dye degradation activities. Characterization of CuO NPs was done by UV-visible spectra, XRD, FT-IR, TEM, and EDX. The synthesized CuO NPs possess a crystalline nature, a functional group that resembles T. parthenium, with a spherical shape particle with an average size of 28 nm. EDX confirmed CuO NPs formation. The CuO NPs showed excellent antimicrobial activity against tested microorganisms. The cytotoxicity of CuO NPs was demonstrated the concentration-dependent inhibition of the growth against both cancer and normal cell lines. The results exhibited concentration-dependent inhibition of the growth of Hela, A 549, and MCF7 cancer cells (IC50 = 65.0, 57.4, and 71.8 µg/mL, respectively), which were statistically significant comparing control cells (IC50 = 226.1 µg/mL). Furthermore, we observed that CuO NPs-induced programmed cell death in the cancer cells were mediated with the downregulation of Bcl2 and upregulation of bax, caspase-3. CuO NPs were verified to be a superb catalyst as they had excellent activity for the degradation of 99.6%, 98.7%, 96.6%, and 96.6% of Congo red, methylene blue, methylene orange, and rhodamine B as industrial dyes in 3, 6.5, 6.5, and 6.5 min, respectively. Overall, the present study nominates T. parthenium as a proper bio-agent in the biosynthesis of CuO NPs with powerful catalytic and antimicrobial activities as well as a cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Filho ACD, de Jesus Soares J, Carriço MRS, Viçozi GP, Flores WH, Denardin CC, Roehrs R, Denardin ELG. Green synthesis silver nanoparticles Bougainvillea glabra Choisy/LED light with high catalytic activity in the removal of methylene blue aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36244-36258. [PMID: 36547835 DOI: 10.1007/s11356-022-24633-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, we evaluated, in a pioneering way, the influence of wavelengths from the decomposition of white light on the production and physicochemical properties of silver nanoparticles (AgNPs). Bearing in mind a process of green synthesis, an extract of the bracts of Bougainvillea glabra Choisy (BgC) was used, a species native to tropical and subtropical regions and frequently used in ornamentation, possessing in its photochemical composition, biomolecules capable of acting as reducing agents for convert Ag+ to Ag0. We used light-emitting diodes (LED) to obtain the desired wavelengths (violet, blue, green, yellow, orange, and red) in the test called rainbow, and we evaluated the obtaining of AgNPs compared to white LED light, nature, and absence of light. In the rainbow assay, we obtained a gradual increase in the intensity of the plasmonic band resonance from the red wavelength (0.124 ± 0.067 a.u.) to violet (0.680 ± 0.199 a.u.), indicating a higher reaction yield in obtaining AgNPs. Smaller hydrodynamic sizes (approximately 150 nm) at more energetic wavelengths (violet, blue, and green) about less energetic wavelengths (yellow, orange, and red) (approximately 400 nm) were obtained. Analysis by SEM microscopy, FTIR spectroscopy, and X-ray diffraction indicates the presence of silver nanoparticles in all LED colors used together with white LED light and Laboratory light (natural light). Due to the high environmental demand to remove pollutants from water sources, including textile dyes, we applied AgNPs/BgC to remove methylene blue (MB) dye from an aqueous solution. A minimum removal percentage greater than 65%, with emphasis on formulations synthesized by the colors of violet LED (84.27 ± 2.65%) and orange LED (85.91 ± 1.95%), was obtained.
Collapse
Affiliation(s)
- Augusto Cezar Dotta Filho
- Laboratório de Estudos Físico-Químicos E Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Jefferson de Jesus Soares
- Laboratório de Estudos Físico-Químicos E Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Murilo Ricardo Sigal Carriço
- Laboratório de Análises Químicas Ambientais E Toxicológicas (LAQAT), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Gabriel Pedroso Viçozi
- Universidade Federal Do Pampa, Campus Uruguaiana, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | | | - Cristiane Casagrande Denardin
- Grupo de Pesquisa Em Bioquímica E Toxicologia Em Compostos Bioativos, Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Rafael Roehrs
- Laboratório de Análises Químicas Ambientais E Toxicológicas (LAQAT), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Elton Luís Gasparotto Denardin
- Laboratório de Estudos Físico-Químicos E Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
10
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Polymer-based nanocomposite adsorbents for resource recovery from wastewater. RSC Adv 2023; 13:31687-31703. [DOI: https:/doi.org/10.1039/d3ra05453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
Adsorption is alternative technique for recovery of nutrient resources with no/less secondary pollution. PNC adsorbents are effective for removal and recovery of nutrient resources, and reusing nutrients as fertilizer could prevent eutrophication.
Collapse
Affiliation(s)
- Aminat Mohammed Ahmed
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Menbere Leul Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| |
Collapse
|
11
|
Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Catalysts Used for Nitrate Reduction: Synthesis, Optimization and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12070797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Excessive concentrations of nitrate (NO3-N) in water lead to the deterioration of water quality, reducing biodiversity and destroying ecosystems. Therefore, the present study investigated NO3-N removal from simulated wastewater by nanoscale zero-valent iron-supported ordered mesoporous Zr-Ce-SBA-15 composites (nZVI/Zr-Ce-SBA-15) assisted by response surface methodology (RSM), an artificial neural network combined with a genetic algorithm (ANN-GA) and a radial basis neural network (RBF). The successful support of nZVI on Zr-Ce-SBA-15 was confirmed using XRD, FTIR, TEM, SEM–EDS, N2 adsorption and XPS, which indicated ordered mesoporous materials. The results showed that ANN-GA was better than the RSM for optimizing the conditions of NO3-N removal and the RBF neural network further confirmed the reliability of the ANN-GA model. The removal rate of NO3-N by the composites reached 95.71% under the optimized experimental conditions (initial pH of 4.89, contact time = of 62.27 min, initial NO3-N concentration of 74.84 mg/L and temperature of 24.77 °C). The process of NO3-N adsorption onto Zr-Ce-SBA-15 composites was followed by the Langmuir model (maximum adsorption capacity of 45.24 mg/g), pseudo-second-order kinetics, and was spontaneous, endothermic and entropy driven. The yield of N2 can be improved after nZVI was supported on Zr-Ce-SBA-15, and the composites exhibited a strong renewability in the short term within three cycles. The resolution of Fe2+ experiments confirmed that nZVI/Zr-Ce-SBA-15 was simultaneously undergoing adsorption and catalysis in the process of NO3-N removal. Our study suggests that the ordered mesoporous nZVI/Zr-Ce-SBA-15 composites are a promising material for simultaneously performing NO3-N removal and improving the selectivity of N2, which provides a theoretical reference for NO3-N remediation from wastewater.
Collapse
|
12
|
Wei Y, Wu Y, Cao X, Cui L, Chen J, Wu Q, Liu D, Sun Z, Zhang Q. Simple Controllable Fabrication of Novel Flower‐Like Hierarchical Porous NiO: Formation Mechanism, Shape Evolution and Their Application into Asymmetric Supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying Wei
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Yuwei Wu
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Xiaoman Cao
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Luxia Cui
- Kyushu University Faculty of Engineering Graduate School of Engineering: Kyushu Daigaku Kogakubu Daigakuin Kogakufu Department of chemistry and Biochemistry JAPAN
| | - Jiaqi Chen
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Qiong Wu
- Liaoning University College of Chemistry CHINA
| | - Daliang Liu
- Liaoning University College of Chemistry CHINA
| | - Zhijia Sun
- Bohai University College of Chemistry and Materials Engineering No.19 keji Road, Songshan New District 121013 Jinzhou CHINA
| | - Qingguo Zhang
- Bohai University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
13
|
Wang Z, Jia Y, Liu X, Liao L, Wang Z, Wang Z. Removal of boron in desalinated seawater by magnetic metal-organic frame-based composite materials: Modeling and optimizing based on methodologies of response surface and artificial neural network. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Bishayee B, Chatterjee RP, Ruj B, Chakrabortty S, Nayak J. Strategic management of nitrate pollution from contaminated water using viable adsorbents: An economic assessment-based review with possible policy suggestions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114081. [PMID: 34823908 DOI: 10.1016/j.jenvman.2021.114081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Groundwater contaminated with nitrate has prompted a flurry of research studies around the world in the recent years to address this burning environmental issue. The common presence of nitrates in groundwater, wastewater, and surface waters has thrown an enormously critical challenge to the global research communities to provide safe and clean drinking water to municipalities. As per WHO, the maximum permissible limit of nitrate in drinking water is 10 mg/L and in groundwater is 50 mg/L; exceeding the limits, several human health problems are observed. Adsorption, ion-exchange processes, membrane-based approaches, electrochemical and chemical procedures, biological methods, filtration, nanoparticles, etc. have been well investigated and reviewed to reduce nitrate levels in water samples in the recent years. Process conditions, as well as the efficacy of various approaches, were discovered to influence different techniques for nitrate mitigation. But, because of low cost, simple operation, easy handling, and high removal effectiveness, adsorption has been found to be the most suitable and efficient approach. The main objectives of this review primarily focuses on the creation of a naturally abundant, cost-effective innovative abundant material, such as activated clay particles combined with iron oxide. Oxide-clay nanocomposite materials, effectively remove nitrate with higher removal efficiency along with recovery of nitrate concentrated sludge. Such methods stand out as flexible and economic ways for capturing stabilized nitrate in solid matrices to satisfy long-term operations. A techno-economic assessment along with suitable policy suggestions have been reported to justify the viability of the brighter processes. Indeed, this kind of analytical review appears ideal for municipal community recommendations on abatement of excess nitrate to supply of clean water.
Collapse
Affiliation(s)
- Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India.
| |
Collapse
|
15
|
Application Potential of Cyanide Hydratase from Exidia glandulosa: Free Cyanide Removal from Simulated Industrial Effluents. Catalysts 2021. [DOI: 10.3390/catal11111410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Industries such as mining, cokemaking, (petro)chemical and electroplating produce effluents that contain free cyanide (fCN = HCN + CN−). Currently, fCN is mainly removed by (physico)chemical methods or by biotreatment with activated sludge. Cyanide hydratases (CynHs) (EC 4.2.1.66), which convert fCN to the much less toxic formamide, have been considered for a mild approach to wastewater decyanation. However, few data are available to evaluate the application potential of CynHs. In this study, we used a new CynH from Exidia glandulosa (protein KZV92691.1 designated NitEg by us), which was overproduced in Escherichia coli. The purified NitEg was highly active for fCN with 784 U/mg protein, kcat 927/s and kcat/KM 42/s/mM. It exhibited optimal activities at pH approximately 6–9 and 40–45 °C. It was quite stable in this pH range, and retained approximately 40% activity at 37 °C after 1 day. Silver and copper ions (1 mM) decreased its activity by 30–40%. The removal of 98–100% fCN was achieved for 0.6–100 mM fCN. Moreover, thiocyanate, sulfide, ammonia or phenol added in amounts typical of industrial effluents did not significantly reduce the fCN conversion, while electroplating effluents may need to be diluted due to high fCN and metal content. The ease of preparation of NitEg, its high specific activity, robustness and long shelf life make it a promising biocatalyst for the detoxification of fCN.
Collapse
|
16
|
Darajeh N, Alizadeh H, Leung DWM, Rashidi Nodeh H, Rezania S, Farraji H. Application of Modified Spent Mushroom Compost Biochar (SMCB/Fe) for Nitrate Removal from Aqueous Solution. TOXICS 2021; 9:277. [PMID: 34822667 PMCID: PMC8621717 DOI: 10.3390/toxics9110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
The public is already aware that nitrate pollution caused by nutrient runoff from farms is harmful to aquatic life and human health, and there is an urgent need for a product/technology to solve this problem. A biochar adsorbent was synthesized and used to remove nitrate ions from aqueous media based on spent mushroom compost (SMC), pre-treated with iron (III) chloride hexahydrate and pyrolyzed at 600 °C. The surface properties and morphology of SMCB/Fe were investigated using Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of main parameters such as the adsorbent dosages, pH of the solutions, contact times, and ion concentrations on the efficiency of nitrate removal was investigated. The validity of the experimental method was examined by the isothermal adsorption and kinetic adsorption models. The nitrate sorption kinetics were found to follow the pseudo-second-order model, with a higher determination coefficient (0.99) than the pseudo-first-order (0.86). The results showed that the maximum percentage of nitrate adsorption was achieved at equilibrium pH 5-7, after 120 min of contact time, and with an adsorbent dose of 2 g L-1. The highest nitrate adsorption capacity of the modified adsorbent was 19.88 mg g-1.
Collapse
Affiliation(s)
- Negisa Darajeh
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | - Hossein Alizadeh
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand;
| | - David W. M. Leung
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Centre, Standard Research Institute, Karaj 3174734563, Iran;
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, Korea;
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| |
Collapse
|
17
|
Foroutan R, Peighambardoust SJ, Hemmati S, Ahmadi A, Falletta E, Ramavandi B, Bianchi CL. Zn 2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe 3O 4 magnetic composite under ultrasonic waves. RSC Adv 2021; 11:27309-27321. [PMID: 35480667 PMCID: PMC9037841 DOI: 10.1039/d1ra04583k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, an easily magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite (HAp/Fe3O4/PDA) was suitably synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution, and its structural properties were thoroughly examined using different analytical techniques. The effect of multiple parameters like pH, ultrasonic power, ultrasonic time, adsorbent dose, and initial Zn2+ concentration on the adsorption efficiency was assessed using RSM-CCD. According to the acquired results, by increasing the adsorbent quantity, ultrasonic power, ultrasonic time, and pH, the Zn2+ adsorption efficiency increased and the interaction between the variables of ultrasonic power/Zn2+ concentration, pH/Zn2+ concentration, pH/absorbent dose, and ultrasonic time/adsorbent dose has a vital role in the Zn2+ adsorption. The uptake process of Zn2+ onto PDA/HAp/Fe3O4 followed Freundlich and pseudo-second order kinetic models. The maximum capacity of Zn2+ adsorption (q m) obtained by PDA/HAp/Fe3O4, HAp/Fe3O4, and HAp was determined as 46.37 mg g-1, 40.07 mg g-1, and 37.57 mg g-1, respectively. Due to its good performance and recoverability (ten times), the HAp/Fe3O4/PDA magnetic composite can be proposed as a good candidate to eliminate Zn2+ ions from a water solution.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz Tabriz 5166616471 Iran
| | | | - Saeed Hemmati
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University Bushehr Iran
| | - Amir Ahmadi
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University Bushehr Iran
| | - Ermelinda Falletta
- Università degli Studi di Milano - Department of Chemistry via Golgi 19 20133 Milan Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) via Giusti 9 50121 Florence Italy
| | - Bahman Ramavandi
- Departments of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences Bushehr Iran
| | - Claudia L Bianchi
- Università degli Studi di Milano - Department of Chemistry via Golgi 19 20133 Milan Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) via Giusti 9 50121 Florence Italy
| |
Collapse
|