1
|
Khashay M, Zirak M, Sheng JJ, Ganat T, Esmaeilnezhad E. Elevated temperature and pressure performance of water based drilling mud with green synthesized zinc oxide nanoparticles and biodegradable polymer. Sci Rep 2025; 15:11930. [PMID: 40199953 PMCID: PMC11978892 DOI: 10.1038/s41598-025-96900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Water-based mud (WBM) faces challenges in high-temperature, high-pressure (HTHP) conditions due to fluid loss and property degradation. Enhancing eco-friendly drilling fluids with optimal rheology is crucial for sustainable, cost-effective, and environmentally safe drilling operations. This study formulated a WBM using green-synthesized zinc oxide (ZnO) nanoparticles (NPs, ~ 45 nm) and tragacanth gum (TG), a biodegradable natural polymer. The synthesized ZnO NPs were comprehensively characterized using energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA/DTG) to determine their structural, morphological, and chemical properties. Rheological properties, including flow behavior index (n), consistency index (K), plastic viscosity (PV), and yield point (YP), were analyzed at 25, 50, and 75 °C using the Bingham-plastic and Power-law models. The accuracy of the model was validated using Analysis of Variance (ANOVA), which assessed the significance of the results. Additionally, Design Expert software was utilized to optimize the concentrations of TG and ZnO for elevated temperature applications. Moreover, the response surface methodology (RSM) results were evaluated by reporting the R2 and accuracy metrics, confirming the strong correlation between predicted and actual values, which demonstrates the model's robustness. Three optimal samples underwent HTHP filtration tests at 120 °C and 500 psi. The ideal formulation of 750 ppm TG and 0.25 wt% ZnO NPs improved PV by 27.84%, YP by 43.16%, reduced fluid loss by 54.16%, and mud cake thickness by 25%. The optimized sample showed superior performance, with a 'K' of 56.12 cp and a 'n' of 0.2272, ensuring effectiveness under HTHP conditions. This sustainable formulation reduced environmental contamination risks and drilling fluid consumption while enhancing operational efficiency.
Collapse
Affiliation(s)
- Milad Khashay
- Department of Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Zirak
- Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
| | - James J Sheng
- Bob L. Herd Department of Petroleum Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Tarek Ganat
- Petroleum and Chemical Engineering Department, Sultan Qaboos University, 123, Al Khodh, Sultanate of Oman.
| | - Ehsan Esmaeilnezhad
- Department of Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran.
| |
Collapse
|
2
|
Ahmed A, Pervaiz E, Ahmed I, Noor T. Remarkable improvement in drilling fluid properties with graphitic-carbon nitride for enhanced wellbore stability. Heliyon 2025; 11:e41237. [PMID: 39816498 PMCID: PMC11732676 DOI: 10.1016/j.heliyon.2024.e41237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
This study examines the viability of using graphitic-Carbon Nitride (g-C3N4) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-C3N4 nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques. The developed g-C3N4 was used to formulate the WBM and its impact on the formulated mud system's rheological and filtration control characteristics as well as on shale stability was examined. In comparison to the base mud, the treated mud showed lower Fluid Loss (FL) and higher thermal stability. FL was reduced by 41.8 % and 68 % under Before Hot Rolling (BHR) and After Hot Rolling (AHR) conditions, respectively, with a maximum cake thickness of 1 mm. The Yield Point was improved by 52 % and 66 % under BHR and AHR conditions, respectively. The increase in Plastic Viscosity, and Apparent Viscosity was 23.8 %, and 38 %, respectively. Shale recovery was 99.6 % in g-C3N4 treated fluid compared to 88 % in the base fluid. The treated shale Brunauer-Emmett-Teller (BET) surface area and the pore volume were significantly reduced compared to the pure shale, indicating significant plugging of shale nano- and micro-pores. The BET surface area of the g-C3N4 treated shale sample was 0.0405 m2/g compared to pure shale sample's surface area 0.3501 m2/g. Correspondingly, the pore volume of treated shale was 0.000029 cm3/g compared to the pure shale sample's pore volume 0.000911 cm3/g. Therefore, based on the experimental results obtained, it is inferred that the developed g-C3N4 nanomaterial has potential applications in WBM systems for drilling long shale sections.
Collapse
Affiliation(s)
- Anwar Ahmed
- Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Erum Pervaiz
- Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Iftikhar Ahmed
- Environment and Public Health Department, College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| | - Tayyaba Noor
- Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
3
|
Ahmed Hullio I, Tunio AH, Akhtar W, Memon MA, Gabol NM. Enhancing the Rheological and Filtration Performance of Water-Based Drilling Fluids Using Silane-Coated Aluminum Oxide NPs. ACS OMEGA 2025; 10:955-963. [PMID: 39829441 PMCID: PMC11740377 DOI: 10.1021/acsomega.4c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
For optimizing the drilling efficiency, nanoparticles (NPs) specifically nanometal oxides have been used in water-based drilling fluids (WBDF). Nano metal oxides improve the rheological and filtration characteristics of the WBDF. However, dispersion instability among pristine nano metals shrinks the performance of the nanometal oxides due to high surface energy. Therefore, this study aims to utilize silane-coated aluminum oxide NPs (S-Al2O3) as an alternative to widely used pristine aluminum oxide (P-Al2O3) in water-based drilling fluids. The S-Al2O3 NPs were synthesized using 3-aminopropyl triethoxysilane (APTES). FTIR, XRD, and SEM analyses were carried out to examine the crystalline structure and surface morphology of NPs. Moreover, the rheological and filtration properties of nanowater-based drilling fluids were investigated at low-pressure and low-temperature (LPLT) conditions. The results of experiments revealed that S-Al2O3 NPs significantly upgraded the rheological properties compared to P-Al2O3 NPs. The S-Al2O3 NPs reduced plastic viscosity from 12.6 to 9.6 cP, apparent viscosity from 34.5 to 26.5 cP, and yield point from 46.5 to 39.5 lb/100 ft2. The gel strengths (10 s and 10 min) were reduced from 44.5 to 32 lb/100 ft2 and from 77 to 59 lb/100 ft2, respectively. Furthermore, S-Al2O3 NPs enhanced the filtration performance, achieving a 26% reduction in filtrate loss and forming a thinner, more impermeable mud cake than P-Al2O3 NPs. In conclusion, the application of S-Al2O3 NPs in water-based drilling fluid was found to be effective in improving the rheological properties and controlling the filtrate loss effectively under LPLT conditions. The utilization of silane-coated NPs used in this study will open new and novel doors of research in the fields of both drilling engineering and nanotechnology.
Collapse
Affiliation(s)
- Imran Ahmed Hullio
- Institute
of Petroleum and Natural Gas Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 77150, Pakistan
| | - Abdul Haque Tunio
- Institute
of Petroleum and Natural Gas Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 77150, Pakistan
| | - Waseem Akhtar
- Department
of Metallurgy & Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 76062, Pakistan
| | - Muddassir Ali Memon
- Department
of Metallurgy & Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 76062, Pakistan
| | - Nasir Mehmood Gabol
- Department
of Metallurgy & Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 76062, Pakistan
| |
Collapse
|
4
|
Khan MA, Li MC, Lv K, Sun J, Liu C, Liu X, Shen H, Dai L, Lalji SM. Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydr Polym 2024; 342:122355. [PMID: 39048218 DOI: 10.1016/j.carbpol.2024.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
The application of cellulose derivatives including carboxymethyl cellulose (CMC), polyanionic cellulose (PAC), hydroxyethyl cellulose (HEC), cellulose nanofibrils (CNFs), and cellulose nanocrystals (CNCs) has gained enormous interest, especially as environmentally friendly additives for water-based drilling fluids (WBDFs). This is due to their sustainable, biodegradable, and biocompatible nature. Furthermore, cellulose nanomaterials (CNMs), which include both CNFs and CNCs, possess unique properties such as nanoscale dimensions, a large surface area, as well as unique mechanical, thermal, and rheological performance that makes them stand out as compared to other additives used in WBDFs. The high surface hydration capacity, strong interaction with bentonite, and the presence of a complex network within the structure of CNMs enable them to act as efficient rheological modifiers in WBDFs. Moreover, the nano-size dimension and facilely tunable surface chemistry of CNMs make them suitable as effective fluid loss reducers as well as shale inhibitors as they have the ability to penetrate, absorb, and plug the nanopores within the exposed formation and prevent further penetration of water into the formation. This review provides an overview of recent progress in the application of cellulose derivatives, including CMC, PAC, HEC, CNFs, and CNCs, as additives in WBDFs. It begins with a discussion of the structure and synthesis of cellulose derivatives, followed by their specific application as rheological, fluid loss reducer, and shale inhibition additives in WBDFs. Finally, the challenges and future perspectives are outlined to guide further research and development in the effective utilization of cellulose derivatives as additives in WBDFs.
Collapse
Affiliation(s)
- Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Shaine Mohammadali Lalji
- Department of Petroleum Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan
| |
Collapse
|
5
|
Emmanuel M. Unveiling the revolutionary role of nanoparticles in the oil and gas field: Unleashing new avenues for enhanced efficiency and productivity. Heliyon 2024; 10:e33957. [PMID: 39055810 PMCID: PMC11269882 DOI: 10.1016/j.heliyon.2024.e33957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Prominent oil corporations are currently engaged in a thorough examination of the potential implementation of nanoparticles within the oil and gas sector. This is evidenced by the substantial financial investments made towards research and development, which serves as a testament to the significant consideration given to nanoparticles. Indeed, nanoparticles has garnered increasing attention and innovative applications across various industries, including but not limited to food, biomedicine, electronics, and materials. In recent years, the oil and gas industry has conducted extensive research on the utilization of nanoparticles for diverse purposes, such as well stimulation, cementing, wettability, drilling fluids, and enhanced oil recovery. To explore the manifold uses of nanoparticles in the oil and gas sector, a comprehensive literature review was conducted. Reviewing several published study data leads to the conclusion that nanoparticles can effectively increase oil recovery by 10 %-15 % of the initial oil in place while tertiary oil recovery gives 20-30 % extra initial oil in place. Besides, it has been noted that the properties of the reservoir rock influence the choice of the right nanoparticle for oil recovery. The present work examines the utilization of nanoparticles in the oil and gas sector, providing a comprehensive analysis of their applications, advantages, and challenges. The article explores various applications of nanoparticles in the industry, including enhanced oil recovery, drilling fluids, wellbore strengthening, and reservoir characterization. By delving into these applications, the article offers a thorough understanding of how nanoparticles are employed in different processes within the sector. This analysis may prove highly advantageous for future studies and applications in the oil and gas sector.
Collapse
Affiliation(s)
- Marwa Emmanuel
- University of Dodoma, College of Natural and Mathematical Sciences, Chemistry Department, Dodoma, Tanzania
| |
Collapse
|
6
|
Mahmoud A, Gajbhiye R, Elkatatny S. Evaluating the Effect of Claytone-EM on the Performance of Oil-Based Drilling Fluids. ACS OMEGA 2024; 9:12866-12880. [PMID: 38524495 PMCID: PMC10956349 DOI: 10.1021/acsomega.3c08967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
This study provides a detailed characterization and evaluation of Claytone-EM as a rheological additive to enhance the performance of oil-based drilling fluids (OBDFs) under high-pressure, high-temperature (HPHT) conditions. It also offers a comparative evaluation of the effectiveness of Claytone-EM with an existing organoclay, analyzing their mineral and chemical compositions, morphologies, and particle sizes. A series of experiments are performed to evaluate Claytone-EM's influence on crucial drilling mud properties, such as mud density, electrical stability, sagging tendency, rheology, viscoelastic properties, and filtration properties, to formulate a stable and high-performing OBDF. Results indicated that Claytone-EM had no significant impact on mud density but remarkably enhanced emulsion stability. Claytone-EM effectively mitigated sagging issues under both static and dynamic conditions, leading to improvements in the plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and YP/PV ratio. The PV, YP, AV, and YP/PV ratios were improved by 11, 85, 28, and 66% increments, respectively, compared with those of the drilling fluid formulated with MC-TONE. The addition of Claytone-EM resulted in enhancing gel strength and improving the filtration properties of the drilling fluid. The filtration volume was reduced by 2% from 5.0 to 4.9 cm3, and the filter cake thickness had a 13% reduction from 2.60 to 2.26 mm. These findings highlight Claytone-EM as a valuable additive for enhancing OBDF performance, particularly under challenging HPHT conditions. Its ability to provide emulsion stability, reduce static and dynamic sag, and control filtration holds the potential to enhance drilling operations, minimize downtime, and bolster wellbore stability. This study acknowledges certain limitations, including its temperature range, which could benefit from exploration at extreme temperatures. Additionally, the absence of flow experiments limits a comprehensive understanding of sag effects, and further research and field-scale evaluations are recommended to validate and optimize the application of Claytone-EM in OBDFs.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
7
|
Mahmoud A, Gajbhiye R, Elkatatny S. Investigating the efficacy of novel organoclay as a rheological additive for enhancing the performance of oil-based drilling fluids. Sci Rep 2024; 14:5323. [PMID: 38438428 PMCID: PMC10912425 DOI: 10.1038/s41598-024-55246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Oil-based drilling fluids (OBDFs) are extensively used in the drilling industry due to their superior performance in challenging drilling conditions. These fluids control wellbore stability, lubricate the drill bit, and transport drill cuttings to the surface. One important component of oil-based drilling fluids is the viscosifier, which provides rheological properties to enhance drilling operations. This study evaluates the effectiveness of Claytone-IMG 400, a novel rheological agent, in enhancing the performance of OBDFs under high-pressure and high-temperature (HPHT) conditions. A comparative analysis was conducted with a pre-existing organoclay (OC) to assess the improvements achieved by Claytone-IMG 400. The OCs were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and particle size distribution (PSD) to identify their mineral and chemical compositions, morphologies, and particle sizes. The drilling fluid density, electrical stability, sagging tendency, rheological properties, viscoelastic properties, and filtration properties were studied to formulate a stable and high-performance drilling fluid. The results confirmed that the novel OC does not affect the drilling fluid density but enhances the emulsion stability with a 9% increment compared with the drilling fluid formulated with MC-TONE. The sagging experiments showed that Claytone-IMG 400 prevented the sagging issues in both static and dynamic conditions. Also, Claytone-IMG 400 improved the plastic viscosity (PV), yield point (YP), and apparent viscosity (AV). The PV, YP, and AV were improved by 30%, 38%, and 33% increments respectively compared with the drilling fluid formulated with MC-TONE. The YP/PV ratio increased with a 6% increment from 1.12 to 1.19. Moreover, the gel strength (GS) was significantly increased, and the filtration properties were enhanced. The filtration volume was reduced by 10% from 5.0 to 4.5 cm3, and the filter cake thickness had a 37.5% reduction from 2.60 to 1.89 mm. The novelty of this study is highlighted by the introduction and evaluation of Claytone-IMG 400 as a new rheological additive for safe, efficient, and cost-effective drilling operations. The results indicate that Claytone-IMG 400 significantly improves the stability and performance of OBDFs, thereby reducing wellbore instability and drilling-related problems.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
8
|
Mahmoud A, Gajbhiye R, Elkatatny S. Application of Organoclays in Oil-Based Drilling Fluids: A Review. ACS OMEGA 2023; 8:29847-29858. [PMID: 37636975 PMCID: PMC10448693 DOI: 10.1021/acsomega.2c07679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Organoclays (OCs), formed by surface modification of clay minerals using organic compounds, are typical additives for providing rheology for oil-based drilling fluids (OBDFs). There are different studies on the effect of OCs on the rheological properties of oil-based systems under high-pressure, high-temperature (HPHT) conditions, but finding new OCs as rheology control agents is attractive for drilling fluid engineers. This work reviews different OCs used in OBDFs, namely, organo-montmorillonite (OMMT), organo-sepiolite (OSEP), and organo-palygorskite (OPAL). Furthermore, the structure of OCs in OBDFs, their rheological properties, and the thermal stability of OCs were investigated. Besides, the role of fibrous and layered OCs in enhancing the rheological properties of OBDFs is illustrated. Finally, the synergistic use of different OCs to enhance the thermal stability and rheological properties of the OBDFs is presented. The study highlights research gaps and recommendations for research approaches and potential areas that need further investigation. The application of OCs in OBDFs is a wide field and has huge potential to be developed. The use of OCs in OBDFs will promote development in the oil and gas industry.
Collapse
Affiliation(s)
- Ali Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Rahul Gajbhiye
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Salaheldin Elkatatny
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Zhang B, Wang Q, Chang X, Du W, Zhang F, Kuruc M, Slaný M, Chen G. Use of Highly Dispersed Mixed Metal Hydroxide Gel Compared to Bentonite Based Gel for Application in Drilling Fluid under Ultra-High Temperatures. Gels 2023; 9:513. [PMID: 37504392 PMCID: PMC10379670 DOI: 10.3390/gels9070513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
In order to solve the problem of poor dispersion and stability of mixed metal hydroxide (MMH), a kind of mixed metal hydroxide-like compound (MMHlc) gel was synthesized for use as the base mud in drilling fluid instead of bentonite gel. Na2CO3, Na2SiO3, and C17H33CO2Na were used as precipitants to form MMHlc with larger interlayer spacing and smaller particle size. MMHlc was synthesized by the coprecipitation method at 25 °C with a metal molar ratio of Mg:Al:Fe = 3:1:1. The performance evaluation of the treated drilling fluid showed that MMHlc (S2) synthesized using Na2SiO3 as the precipitant had the characteristics of low viscosity, low filtration, and a high dynamic plastic ratio at 25 °C, which fully met the requirements of oil field application, and it maintained its excellent properties after being aged at 250 °C for 16 h. Linear expansion and rolling recovery experiments showed that the S2 sample had excellent rheological properties and good inhibition. X-ray diffraction and FT-IR experiments showed that S2 had the most complete crystal structure, its interlayer distance was large, and its ion exchange capacity was strong. The thermogravimetric experiment showed that the S2 crystal was stable and the temperature resistance of the crystal could reach 340 °C. Zeta potential, particle size analysis, SEM, and TEM results showed that S2 is a nanomaterial with a complete morphology and uniform distribution. The drilling fluid of this formula had the characteristics of low viscosity, low filtration loss, and a high dynamic plastic ratio, and it met the conditions for oil field application. Considering these results, the new MMH prepared by our research institute is a drilling fluid material that can be used at ultra-high temperatures and can provide important support for drilling ultra-deep wells.
Collapse
Affiliation(s)
- Bowen Zhang
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
| | - Qingchen Wang
- CNPC Chuanqing Drilling Engineering Company Ltd., Xi'an 710018, China
| | - Xiaofeng Chang
- CNPC Chuanqing Drilling Engineering Company Ltd., Xi'an 710018, China
| | - Weichao Du
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
| | - Fan Zhang
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
| | - Michal Kuruc
- Department of Materials Engineering and Physics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovakia
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia
- Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovakia
| | - Gang Chen
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
10
|
Jameel N, Ali JA. Field and Experimental Investigations on the Effect of Reservoir Drill-In Fluids on Penetration Rate and Drilling Cost in Horizontal Wells. Gels 2023; 9:510. [PMID: 37504389 PMCID: PMC10378768 DOI: 10.3390/gels9070510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, the reservoir drill-in fluid (RDF) was modified and optimized to improve the rheological properties and reduce the filtration properties of the drilling fluid used for drilling the oil-bearing zone horizontally. In polymer science, degradation generally refers to a complex process, by which a polymeric material exposed to the environment and workload loses its original properties. Degradation is usually an unwanted process. In certain cases, however, controlled polymer degradation is useful. For instance, it can improve the processability of the polymer or can be used in recycling or natural decomposition of waste polymer. Thus, the drilling fluid and parameter data of 30 horizontal wells that were drilled in the south of Iraq were collected using several reservoir drill-in fluids (RDFs), including FLOPRO, salt polymer mud (SPM), non-damaged fluid (NDF), and FLOPRO_PTS-200 (including the polymer thermal stabilizer). The obtained results showed that the polymer temperature stabilizer (PTS-200) enabled reducing the filtration rate by 44.33% and improved the rheological properties by 19.31% as compared with FLOPRO. Additionally, the average cost of NDF and SPM drilling fluids for drilling the horizontal section of the selected wells is around USD 96,000 and USD 91,000, respectively. However, FLOPRO-based drilling fluid showed less cost for drilling the horizontal section, which is USD 45,000.
Collapse
Affiliation(s)
- Neamat Jameel
- Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hawler, Erbil 44001, Iraq
| | - Jagar A Ali
- Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran P.O. Box 624, Iraq
- Department of Geology, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
11
|
Aghababai Beni A, Jabbari H. Nanomaterials for Environmental Applications. RESULTS IN ENGINEERING 2022; 15:100467. [DOI: 10.1016/j.rineng.2022.100467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
|
12
|
Hussain SM, Goud BS, Madheshwaran P, Jamshed W, Pasha AA, Safdar R, Arshad M, Ibrahim RW, Ahmad MK. Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study. ACS OMEGA 2022; 7:25309-25320. [PMID: 35910125 PMCID: PMC9330264 DOI: 10.1021/acsomega.2c02207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 05/16/2023]
Abstract
During thermal radiation treatments, heat therapies, and examination procedures like scans and X-rays, the cylindrical blood vessels may get stretched; meanwhile, the blood flow through those blood vessels may get affected due to temperature variations around them. To overcome this issue, this work was framed to explore the impact of heat transmission in a Carreau fluid flow (CFF) through a stretching cylinder in terms of the nonlinear stretching rate and irregular heat source/sink. Temperature-dependent thermal conductivity and thermal radiation are taken into consideration in this study. To tranform complicated partial differential equations into ordinary differential equations, appropriate similarity variables are used. For a limited set of instances, the derived series solutions are compared to previously published results. For linear and nonlinear stretching rates, graphs and tables are used to examine the influence of an irregular heat source/sink on fluid movement and heat transfer. The research outcomes demonstrate that the heat source and nonlinear stretching rate cause a disruption in the temperature distribution in the fluid region, which can alter the blood flow through the vessels. In all conditions except for the heat in an internal heat sink, the nonlinear stretching situation improves the velocity and heat profile. Furthermore, with the increase in the values of the Weissenberg number, the temperature profile shows opposing features in a shear-thickening fluid and shear-thinning fluid. For the former n > 1, the blood fluidity gets affected, restricting the free movement of blood. For the latter, n < 1, the phenomenon is reversed. Other industrial applications of this work are wire coating, plastic coverings, paper fabrication, fiber whirling, etc. In all of those processes, the fluid flow is manipulated by thermal conditions.
Collapse
Affiliation(s)
- Syed M. Hussain
- Department
of Mathematics, Faculty of Science, Islamic
University of Madinah, Medina 42351, Saudi Arabia
| | - B. Shankar Goud
- Department
of Mathematics, JNTUH College of Engineering
Hyderabad, Kukatpally, Hyderabad, Telangana500085, India
| | - Prakash Madheshwaran
- Department
of Mathematics, Dr. N.G.P. Institute of
Technology, Coimbatore, Tamil Nadu 641048, India
| | - Wasim Jamshed
- Department
of Mathematics, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
| | - Amjad Ali Pasha
- Aerospace
Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rabia Safdar
- Department
of Mathematics, Lahore College for Women
University, 54000 Lahore, Pakistan
| | - Misbah Arshad
- Department
of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Rabha W. Ibrahim
- The
Institute of Electrical and Electronics Engineers (IEEE): 94086547, Portland, Oregon 13765, United States
| | - Mohammad Kalimuddin Ahmad
- Department
of Mathematics, Faculty of Science, Islamic
University of Madinah, Medina 42351, Saudi Arabia
| |
Collapse
|
13
|
Zamora-Ledezma C, Narváez-Muñoz C, Guerrero VH, Medina E, Meseguer-Olmo L. Nanofluid Formulations Based on Two-Dimensional Nanoparticles, Their Performance, and Potential Application as Water-Based Drilling Fluids. ACS OMEGA 2022; 7:20457-20476. [PMID: 35935292 PMCID: PMC9347972 DOI: 10.1021/acsomega.2c02082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable, cost-efficient, and high-performance nanofluids is one of the current research topics within drilling applications. The inclusion of tailorable nanoparticles offers the possibility of formulating water-based fluids with enhanced properties, providing unprecedented opportunities in the energy, oil, gas, water, or infrastructure industries. In this work, the most recent and relevant findings related with the development of customizable nanofluids are discussed, focusing on those based on the incorporation of 2D (two-dimensional) nanoparticles and environmentally friendly precursors. The advantages and drawbacks of using 2D layered nanomaterials including but not limited to silicon nano-glass flakes, graphene, MoS2, disk-shaped Laponite nanoparticles, layered magnesium aluminum silicate nanoparticles, and nanolayered organo-montmorillonite are presented. The current formulation approaches are listed, as well as their physicochemical characterization: rheology, viscoelastic properties, and filtration properties (fluid losses). The most influential factors affecting the drilling fluid performance, such as the pH, temperature, ionic strength interaction, and pressure, are also debated. Finally, an overview about the simulation at the microscale of fluids flux in porous media is presented, aiming to illustrate the approaches that could be taken to supplement the experimental efforts to research the performance of drilling muds. The information discussed shows that the addition of 2D nanolayered structures to drilling fluids promotes a substantial improvement in the rheological, viscoelastic, and filtration properties, additionally contributing to cuttings removal, and wellbore stability and strengthening. This also offers a unique opportunity to modulate and improve the thermal and lubrication properties of the fluids, which is highly appealing during drilling operations.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Christian Narváez-Muñoz
- Escola
Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya—Barcelonatech
(UPC), Jordi Girona 1, Campus Nord UPC, 08034 Barcelona, Spain
- Centre
Internacional de Mètodes Numérics en Enginyeria (CIMNE), Gran Capitán s/n, Campus Nord UPC, 08034 Barcelona, Spain
| | - Víctor H. Guerrero
- Departamento
de Materiales, Escuela Politécnica
Nacional, Quito, 170525, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - Luis Meseguer-Olmo
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
14
|
A Three-Dimensional Finite-Element Model in ABAQUS to Analyze Wellbore Instability and Determine Mud Weight Window. ENERGIES 2022. [DOI: 10.3390/en15093449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wellbore instability is one of the main problems of the oil industry, causing high costs in the drilling operation. Knowing about the mechanical properties of involved formations and in-situ stresses is a privilege gained by determining an appropriate mud weight window (MWW). To this aim, a three-dimensional (3D) finite-element model was simulated in ABAQUS to analyze in-situ stresses and determine the MWW in the drilling operation of wellbore-D in the Azar oilfield. The results from the 3D finite model revealed that the Azar oilfield is structurally under the impact of a complex tectonic system dominated by two reverse faults with a configuration of σH > σh > σv across the Sarvak Formation. The amount of vertical, minimum, and maximum horizontal stresses was 90.15, 90.15, and 94.66 MPa, respectively, at a depth of 4 km. Besides, the amount of pore pressure and its gradient was 46 MPa and 11.5 MPa/km, respectively. From drilling wellbore-D in the direction of the maximum horizontal stress, the lower limit of the MWW was obtained at 89 pcf. In this case, the results showed that the wellbore with a deviation angle of 10° is critical with a mud weight lower than 89 pcf. It caused the fall of the wellbore wall within the plastic zone sooner than other deviation angles. Also, in the case of drilling wellbore in the direction of minimum horizontal stress, the lower limit of the MWW was 90.3 pcf. Moreover, in the deviation angle of approximately 90°, the wellbore wall remained critical while the mud weight was below 90.3 pcf. Comparison of the results of numerical and analytical modeling showed that the modeling error falls within an acceptable value of < 4%. As a result, the wellbore with the azimuth of the maximum horizontal stress needed less mud weight and decreased the drilling costs. This particular research finding also provides insights for obtaining the lower limit of the mud weight window and determining the optimal path of the well-bore when using directional drilling technology.
Collapse
|
15
|
Minimizing Formation Damage in Drilling Operations: A Critical Point for Optimizing Productivity in Sandstone Reservoirs Intercalated with Clay. ENERGIES 2021. [DOI: 10.3390/en15010162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recovery of oil and gas from underground reservoirs has a pervasive impact on petroleum-producing companies’ financial strength. A significant cause of the low recovery is the plugging of reservoir rocks’ interconnected pores and associated permeability impairment, known as formation damage. Formation damage can effectively reduce productivity in oil- and gas-bearing formations—especially in sandstone reservoirs endowed with clay. Therefore, knowledge of reservoir rock properties—especially the occurrence of clay—is crucial to predicting fluid flow in porous media, minimizing formation damage, and optimizing productivity. This paper aims to provide an overview of recent laboratory and field studies to serve as a reference for future extensive examination of formation damage mitigation/formation damage control technology measures in sandstone reservoirs containing clay. Knowledge gaps and research opportunities have been identified based on the review of the recent works. In addition, we put forward factors necessary to improve the outcomes relating to future studies.
Collapse
|
16
|
Filtration and structure of bentonite-β-cyclodextrin polymer microspheres suspensions: Effect of thermal aging time. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Ikram R, Mohamed Jan B, Sidek A, Kenanakis G. Utilization of Eco-Friendly Waste Generated Nanomaterials in Water-Based Drilling Fluids; State of the Art Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4171. [PMID: 34361364 PMCID: PMC8347392 DOI: 10.3390/ma14154171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/23/2023]
Abstract
An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.
Collapse
Affiliation(s)
- Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Akhmal Sidek
- Petroleum Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece
| |
Collapse
|