1
|
Reiß A, Göttlicher J, Vitova T, Feldmann C. Semiconducting Manganese-Bipyridyl Coordination Polymer via a Manganese-Metal-Nanoparticle Approach. Inorg Chem 2025; 64:9469-9476. [PMID: 40319394 DOI: 10.1021/acs.inorgchem.5c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The coordination polymer [Na2Mn2(4,4'-bipy)7(2,2'-bipy)4] is prepared by a novel redox approach using Mn(0) nanoparticles (2.4 ± 0.3 nm in size) as the starting material. The Mn(0) nanoparticles are then reacted with 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy) in toluene at 80 °C. The title compound is composed of ∞1[Mn(2,2'-bipy)(4,4'-bipy)3/2] chains and double-stranded ∞1[Na2(2,2'-bipy)2(4,4'-bipy)4] chains forming an interpenetrating coordination network with five noncharged bipy ligands and six anionic [bipy]- ligands. Such composition and coordination with bipy as sole ligand and anion are observed for the first time. Structure and composition are validated by X-ray diffraction based on single crystals and powders, XANES spectroscopy, infrared spectroscopy, and elemental analysis. Optical spectroscopy of the black-red, shiny metallic crystals shows absorption below 350 nm with a band gap <1.5 eV. Power-voltage curves indicate semiconducting behavior with a positive temperature gradient and silicon-like conductivity (3 × 10-4 S/m, 25 °C). In sum, the redox approach using Mn(0) nanoparticles allows for preparation of a Mn-coordinated interpenetrating network with 2,2'-bipy and 4,4'-bipy as sole ligands and semiconducting properties. The redox approach generally offers the option to realize further bipyridyl networks with other metals and semiconducting or metallic properties.
Collapse
Affiliation(s)
- Andreas Reiß
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Jörg Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Claus Feldmann
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15, D-76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Mallick Ganguly O, Moulik S. Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment. Dalton Trans 2023; 52:10639-10656. [PMID: 37475585 DOI: 10.1039/d3dt00659j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Manganese (Mn) is one of the most significant bio-metals that helps the body to form connective tissue, bones, blood clotting factors, and sex hormones. It is necessary for fat and carbohydrate metabolism, calcium absorption, blood sugar regulation, and normal brain and nerve functions. It accelerates the synthesis of proteins, vitamin C, and vitamin B. It is also involved in the catalysis of hematopoiesis, regulation of the endocrine level, and improvement of immune function. Again, Mn metalloenzymes like arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase, and Mn superoxide dismutase (MnSOD) contribute to the metabolism processes and reduce oxidative stress against free radicals. Recent investigations have revealed that synthetic Mn-complexes act as antibacterial and antifungal agents. As a result, chemists and biologists have been actively involved in developing Mn-based drugs for the treatment of various diseases including cancer. Therefore, any therapeutic drugs based on manganese complexes would be invaluable for the treatment of cancer/infectious diseases and could be a better substitute for cisplatin and other related platinum based chemotherapeutic drugs. From this perspective, attempts have been made to discuss the interactions and nuclease activities of Mn(II/III/IV) complexes with DNA through which one can evaluate their therapeutic applications.
Collapse
Affiliation(s)
- Oishi Mallick Ganguly
- St Xavier's College, 30, Park St, Mullick Bazar, Park Street area, Kolkata, West Bengal 700016, India
| | - Shuvojit Moulik
- Suraksha Diagnostics Pvt Ltd, Newtown 12/1, Premises No. 02-0327, DG Block(Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
3
|
Cai L, Wang Y, Chen Y, Chen H, Yang T, Zhang S, Guo Z, Wang X. Manganese(ii) complexes stimulate antitumor immunity via aggravating DNA damage and activating the cGAS-STING pathway. Chem Sci 2023; 14:4375-4389. [PMID: 37123182 PMCID: PMC10132258 DOI: 10.1039/d2sc06036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Activating the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a promising immunotherapeutic strategy for cancer treatment. Manganese(ii) complexes MnPC and MnPVA (P = 1,10-phenanthroline, C = chlorine, and VA = valproic acid) were found to activate the cGAS-STING pathway. The complexes not only damaged DNA, but also inhibited histone deacetylases (HDACs) and poly adenosine diphosphate-ribose polymerase (PARP) to impede the repair of DNA damage, thereby promoting the leakage of DNA fragments into cytoplasm. The DNA fragments activated the cGAS-STING pathway, which initiated an innate immune response and a two-way communication between tumor cells and neighboring immune cells. The activated cGAS-STING further increased the production of type I interferons and secretion of pro-inflammatory cytokines (TNF-α and IL-6), boosting the tumor infiltration of dendritic cells and macrophages, as well as stimulating cytotoxic T cells to kill cancer cells in vitro and in vivo. Owing to the enhanced DNA-damaging ability, MnPC and MnPVA showed more potent immunocompetence and antitumor activity than Mn2+ ions, thus demonstrating great potential as chemoimmunotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Yayu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| |
Collapse
|
4
|
Stamou P, Hatzidimitriou AG, Psomas G. Manganese(II) complexes with 5-nitro-2-hydroxy-benzaldehyde or substituted 2-hydroxy-phenones: Structure and interaction with bovine serum albumin and calf-thymus DNA. J Inorg Biochem 2022; 235:111923. [PMID: 35834897 DOI: 10.1016/j.jinorgbio.2022.111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
A series of Mn(II) complexes of 5-nitro-salicyladehyde or substituted 2-hydroxy-phenones (HL) were synthesized in the absence or presence of a N,N'-donor co-ligand such as 2,2'-bipyridine, 1,10-phenanthroline, or 2,2'-bipyridylamine. The resultant coordination compounds were formulated as [Mn(L)2(CH3OH)2] (1-3) and [Mn(L)2(N,N'-donor)] (4-14), respectively, and characterized by diverse techniques. The crystal structures of three complexes were determined by single-crystal X-ray crystallography. Diverse techniques were employed to study the interaction of the complexes with calf-thymus DNA and showed intercalation as the most possible mode of their tight interaction. The affinity of the complexes for bovine serum albumin was investigated by fluorescence emission spectroscopy in order to calculate the binding constants which suggested a tight and reversible binding.
Collapse
Affiliation(s)
- Paraskevi Stamou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
5
|
Sultana R, Arif R, Rana M, Ahmedi S, Mehandi R, Akrema, Manzoor N, Rahisuddin. Ni (II) detection by 2-amino-5-substituted-1,3,4-oxadiazole as a chemosensor using photo-physical method: Antifungal, antioxidant, DNA binding, and molecular docking studies. LUMINESCENCE 2022; 37:408-421. [PMID: 34986516 DOI: 10.1002/bio.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine and the structural confirmation was supported by 1 H and 13 C NMR, FT-IR spectroscopy, and LC-MS spectrometry. Its sensing ability was examined towards Ni2+ ion with binding constant 1.04 x 105 over the other suitable metal cations (Ca2+ , Co2+ , Cr3+ , Ag+ , Pb2+ , Fe3+ , Mg2+ , and K+ ) by UV-visible and fluorescence spectroscopic studies and the minimum concentration of Ni2+ ion with LOD was found to be 9.4μM. Job's plot method gives the binding stoichiometry ratio of Ni2+ ion vs oxadiazole derivative 2 to be 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with Calf Thymus DNA was supported by UV-Vis, fluorescence, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gives the binding score for oxadiazole derivative 2 to be -6.5 kcal/mol, which further confirms the intercalative interaction. In addition, the anti-fungal activity of oxadiazole derivative 2 was also screened against fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion method. In the antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against DPPH and H2 O2 free radicals.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rizwan Arif
- Department of Chemistry, Lingayas Vidyapeeth, Faridabad, Haryana, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Akrema
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Ntanatsidis S, Perontsis S, Konstantopoulou S, Kalogiannis S, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Manganese(II) complexes of substituted salicylaldehydes and α-diimines: Synthesis, characterization and biological activity. J Inorg Biochem 2021; 227:111693. [PMID: 34915237 DOI: 10.1016/j.jinorgbio.2021.111693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The interaction of Mn+2 with substituted salicylaldehydes (X-saloH) led to the formation of five manganese(II) complexes formulated as [Μn(X-salo)2(MeOH)2]. When the reactions took place in the presence of an α-diimine such as 2,2'-bipyridine, 1,10-phenanthroline or 2,2'-bipyridylamine, five manganese(II) complexes of the formula [Mn(X-salo)2(α-diimine)] were isolated. The characterization of the complexes was accomplished by various spectroscopic techniques and single-crystal X-ray crystallography. The antioxidant activity of the compounds was evaluated via the scavenging of 1,1-diphenyl-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and hydroxyl free radicals. The antibacterial activity of the complexes was tested in vitro against Staphylococcus aureus and Xanthomonas campestris bacterial strains and was found moderate. Diverse techniques were employed to examine the interaction of the complexes with calf-thymus DNA which showed intercalation as the most possible interaction mode. The affinity of the complexes for bovine serum albumin was investigated by fluorescence emission spectroscopy and the binding constants were determined.
Collapse
Affiliation(s)
- Savvas Ntanatsidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Spyros Perontsis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Sofia Konstantopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
7
|
Fan YR, Wang BJ, Jia DG, Yang XB, Huang Y. Synthesis, electrochemistry, DNA binding and in vitro cytotoxic activity of tripodal ferrocenyl bis-naphthalimide derivatives. J Inorg Biochem 2021; 219:111425. [PMID: 33831713 DOI: 10.1016/j.jinorgbio.2021.111425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 01/16/2023]
Abstract
A series of tripodal ferrocenyl bis-naphthalimide derivatives were synthesized and characterized. All of the bis-naphthalimide derivatives exhibited good DNA binding ability which was confirmed by ethidium bromide (EB) displacement experiment and ultraviolet (UV)-visible absorption titration. And the binding mode of these compounds was proved to be a hybrid binding mode by experiments. The cytotoxicity of synthesized compounds against 4 different human cancer cell lines (EC109, BGC823, SGC7901 and HEPG2) was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay. All of the bis-naphthalimide derivatives exhibited good anticancer activity than the positive control drug (amonafide), which was due to the promotion of reactive oxygen species (ROS) level in test cancer cells by the reversible one-electron redox process of ferrocenyl bis-naphthalimide derivatives. Although there was no obvious relationship between the binding constants and the chain length, the structure cytotoxicity relationship revealed that the linker of n = 3, m = 1 was the best choice for the tested tripodol bis-naphthalimide derivatives. SYNOPSIS: A series of tripodal ferrocenyl bis-naphthalimide derivatives were synthesized to study the DNA binding ability and the cytotoxicity induced by reactive oxygen species. All of the compounds exhibited good DNA binding ability. And the structure cytotoxicity relationship revealed that the structure of 5h was the best choice.
Collapse
Affiliation(s)
- Yan-Ru Fan
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Bo-Jin Wang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Deng-Guo Jia
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Xin-Bin Yang
- Southwest University, Rongchang Campus, Chongqing 402460, PR China
| | - Yu Huang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|