1
|
Chen YK, Gahtani RM, Al Shahrani M, Hani U, Alshabrmi FM, Alam S, Almohaimeed HM, Basabrain AA, Shahab M, Xie MZ. Identification of potential inhibitors targeting Ebola virus VP35 protein: a computational strategy. J Biomol Struct Dyn 2025; 43:2877-2889. [PMID: 38124513 DOI: 10.1080/07391102.2023.2294384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Ebola virus (EBOV) poses a severe threat as a highly infectious pathogen, causing devastating hemorrhagic fever in both humans and animals. The EBOV virus VP35 protein plays a crucial role in viral replication and exhibits the ability to suppress the host interferon cascade, leading to immune system depletion. As a potential drug target, VP35 protein inhibition holds promise for combating EBOV. To discover new drug candidates, we employed a computer-aided drug design approach, focusing on compounds capable of inhibiting VP35 protein replication. In this connection, a pharmacophore model was generated using molecular interactions between the VP35 protein and its inhibitor. ZINC and Cambridge database were screened using validated pharmacophore model. Further the compounds were filtered based on Lipinski's rule of five and subjected to MD simulation and relative binding free energy calculation. Six compounds manifest a significant docking score and strong binding interaction towards VP35 protein. MD simulations further confirmed the remarkable stability of these six complexes. Relative binding free energy calculations also showed significant ΔG value in the range of -132.3 and -49.3 kcal/mol. This study paves the way for further optimization of these compounds as potential inhibitors of VP35, facilitating subsequent experimental in vitro studies.
Collapse
Affiliation(s)
- Yan-Kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Zhuhai, China
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha,Saudia Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Sarfaraz Alam
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Meng-Zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Zia K, Nur-E-Alam M, Ahmad A, Ul-Haq Z. Taming the cytokine storm: small molecule inhibitors targeting IL-6/IL-6α receptor. Mol Divers 2024; 28:4151-4165. [PMID: 38366102 DOI: 10.1007/s11030-023-10805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Given the increasing effectiveness of immune-based therapies, management of their associated toxicities is of utmost importance. Cytokine release syndrome (CRS), characterized by elevated levels of cytokine, poses a significant challenge following the administration of antibodies and CAR-T cell therapies. CRS also contributes to multiple organ dysfunction in severe viral infections, notably in COVID-19. Given the pivotal role of IL-6 cytokine in initiating CRS, it has been considered a most potential therapeutic target to mitigate hyperactivated immune responses. While monoclonal antibodies of IL-6 show promise in mitigating cytokine storm, concerns about immunotoxicity persist, and small molecule IL-6 antagonists remain unavailable. The present study employed sophisticated computational techniques to identify potential hit compounds as IL-6 inhibitors, with the aim of inhibiting IL-6/IL-6R protein-protein interactions. Through ligand-based pharmacophore mapping and shape similarity in combination with docking-based screening, we identified nine hit compounds with diverse chemical scaffolds as potential binders of IL-6. Further, the MD simulation of 300 ns of five virtual hits in a complex with IL-6 was employed to study the dynamic behavior. To provide a more precise prediction, binding free energy was also estimated. The identified compounds persistently interacted with the residues lining the binding site of the IL-6 protein. These compounds displayed low binding energy during MMPBSA calculations, substantiating their strong association with IL-6. This study suggests promising scaffolds as potential inhibitors of IL-6/IL-6R protein-protein interactions and provides direction for lead optimization.
Collapse
Affiliation(s)
- Komal Zia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Aftab Ahmad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Almehmadi M, Haq IU, Alsaiari AA, Alshabrmi FM, Abdulaziz O, Allahyani M, Aladhadh M, Shafie A, Aljuaid A, Alotaibi RT, Ullah J, Alharthi NS. Identification of Small Molecule Inhibitors of Human Cytomegalovirus pUL89 Endonuclease Using Integrated Computational Approaches. Molecules 2023; 28:3938. [PMID: 37175348 PMCID: PMC10180037 DOI: 10.3390/molecules28093938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Replication of Human Cytomegalovirus (HCMV) requires the presence of a metal-dependent endonuclease at the C-terminus of pUL89, in order to properly pack and cleave the viral genome. Therefore, pUL89 is an attractive target to design anti-CMV intervention. Herein, we used integrated structure-based and ligand-based virtual screening approaches in combination with MD simulation for the identification of potential metal binding small molecule antagonist of pUL89. In this regard, the essential chemical features needed for the inhibition of pUL89 endonuclease domain were defined and used as a 3D query to search chemical compounds from ZINC and ChEMBL database. Thereafter, the molecular docking and ligand-based shape screening were used to narrow down the compounds based on previously identified pUL89 antagonists. The selected virtual hits were further subjected to MD simulation to determine the intrinsic and ligand-induced flexibility of pUL89. The predicted binding modes showed that the compounds reside well in the binding site of endonuclease domain by chelating with the metal ions and crucial residues. Taken in concert, the in silico investigation led to the identification of potential pUL89 antagonists. This study provided promising starting point for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Rema Turki Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Jawad Ullah
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Nada Saud Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
4
|
Identification of Natural Lead Compounds against Hemagglutinin-Esterase Surface Glycoprotein in Human Coronaviruses Investigated via MD Simulation, Principal Component Analysis, Cross-Correlation, H-Bond Plot and MMGBSA. Biomedicines 2023; 11:biomedicines11030793. [PMID: 36979773 PMCID: PMC10044901 DOI: 10.3390/biomedicines11030793] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound ‘Calceolarioside B’ was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind −37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.
Collapse
|
5
|
Khan SA, Khan A, Zia K, Shawish I, Barakat A, Ul-Haq Z. Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. Int J Mol Sci 2022; 23:ijms231810315. [PMID: 36142242 PMCID: PMC9498999 DOI: 10.3390/ijms231810315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
During the past two decades, the world has witnessed the emergence of various SARS-CoV-2 variants with distinct mutational profiles influencing the global health, economy, and clinical aspects of the COVID-19 pandemic. These variants or mutants have raised major concerns regarding the protection provided by neutralizing monoclonal antibodies and vaccination, rates of virus transmission, and/or the risk of reinfection. The newly emerged Omicron, a genetically distinct lineage of SARS-CoV-2, continues its spread in the face of rising vaccine-induced immunity while maintaining its replication fitness. Efforts have been made to improve the therapeutic interventions and the FDA has issued Emergency Use Authorization for a few monoclonal antibodies and drug treatments for COVID-19. However, the current situation of rapidly spreading Omicron and its lineages demands the need for effective therapeutic interventions to reduce the COVID-19 pandemic. Several experimental studies have indicated that the FDA-approved monoclonal antibodies are less effective than antiviral drugs against the Omicron variant. Thus, in this study, we aim to identify antiviral compounds against the Spike protein of Omicron, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor and facilitates virus invasion. Initially, docking-based virtual screening of the in-house database was performed to extract the potential hit compounds against the Spike protein. The obtained hits were optimized by DFT calculations to determine the electronic properties and molecular reactivity of the compounds. Further, MD simulation studies were carried out to evaluate the dynamics of protein–ligand interactions at an atomistic level in a time-dependent manner. Collectively, five compounds (AKS-01, AKS-02, AKS-03, AKS-04, and AKS-05) with diverse scaffolds were identified as potential hits against the Spike protein of Omicron. Our study paves the way for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (A.B.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (A.B.); (Z.U.-H.)
| |
Collapse
|
6
|
Khan A, Khan SA, Zia K, Altowyan MS, Barakat A, Ul-Haq Z. Deciphering the Impact of Mutations on the Binding Efficacy of SARS-CoV-2 Omicron and Delta Variants With Human ACE2 Receptor. Front Chem 2022; 10:892093. [PMID: 35755247 PMCID: PMC9213841 DOI: 10.3389/fchem.2022.892093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
The pandemic of COVID-19, caused by SARS-CoV-2, has globally affected the human health and economy. Since the emergence of the novel coronavirus SARS-CoV-2, the life-threatening virus continues to mutate and evolve. Irrespective of acquired natural immunity and vaccine-induced immunity, the emerging multiple variants are growing exponentially, crossing the territorial barriers of the modern world. The rapid emergence of SARS-CoV-2 multiple variants challenges global researchers regarding the efficacy of available vaccines and variant transmissibility. SARS-CoV-2 surface-anchored S-protein recognizes and interacts with the host-cell ACE2, facilitating viral adherence and entrance into the cell. Understanding the interfacial interactions between the spike protein of SARS-CoV-2 variants and human ACE2 receptor is important for the design and development of antiviral therapeutics against SARS-CoV-2 emerging variants. Despite extensive research, the crucial determinants related to the molecular interactions between the spike protein of SARS-CoV-2 variants and host receptors are poorly understood. Thus, in this study, we explore the comparative interfacial binding pattern of SARS-CoV-2 spike RBD of wild type, Delta, and Omicron with the human ACE2 receptor to determine the crucial determinants at the atomistic level, using MD simulation and MM/GBSA energy calculations. Based on our findings, the substitution of Q493R, G496S, Q498R, and Y505H induced internal conformational changes in Omicron spike RBD, which leads to higher binding affinity than Delta spike RBD with the human ACE2 receptor, eventually contributing to higher transmission and infectivity. Taken together, these results could be used for the structure-based design of effective antiviral therapeutics against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Zhang H, Zhang L, Gao C, Yu R, Kang C. Pharmacophore screening, molecular docking, ADMET prediction and MD simulations for identification of ALK and MEK potential dual inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PL pro and Mac1) and 5 (3CL pro/M pro) of SARS-CoV-2. Comput Struct Biotechnol J 2021; 19:4868-4883. [PMID: 34457214 PMCID: PMC8382591 DOI: 10.1016/j.csbj.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop effective treatments for coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid spread of SARS-CoV-2 has resulted in a global pandemic that has not only affected the daily lives of individuals but also had a significant impact on the global economy and public health. Although extensive research has been conducted to identify inhibitors targeting SARS-CoV-2, there are still no effective treatment strategies to combat COVID-19. SARS-CoV-2 comprises two important proteolytic enzymes, namely, the papain-like proteinase, located within non-structural protein 3 (nsp3), and nsp5, both of which cleave large replicase polypeptides into multiple fragments that are required for viral replication. Moreover, a domain within nsp3, known as the macrodomain (Mac1), also plays an important role in viral replication. Inhibition of their functions should be able to significantly interfere with the replication cycle of the virus, and therefore these key proteins may serve as potential therapeutic targets. The functions of the above viral targets and their corresponding inhibitors have been summarized in the current review. This review provides comprehensive updates of nsp3 and nsp5 inhibitor development and would help advance the discovery of novel anti-viral therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|