1
|
Wang Q, Wang H, Hu X, Fan Z, Wang Y, Ma P, Niu J, Wang J. Synthesis and Structure of a Copper-Based Functional Network for Efficient Organic Dye Adsorption. Inorg Chem 2022; 61:19764-19772. [PMID: 36442072 DOI: 10.1021/acs.inorgchem.2c02817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the work, by incorporating polyoxometalates (POMs) into a copper(II)-based network, a novel three-dimensional (3D) porous framework, [Cu17Cl3(trz)12]H3[GaW12O40]·9H2O (Cu-GaW-TRZ), was successfully prepared and explored for the adsorption of dyes. The adsorption capacity of Cu-GaW-TRZ was calculated as 13.11 mg/g, and the dye adsorption rate equaled 96.2% for the adsorption of methylene blue (MB). Furthermore, this recyclable adsorbent is stable enough without obvious loss of adsorption capacity for at least five runs. Meanwhile, the structure of the macropores is suitable for the entry of large molecular dyes, and [GaW12O40]5- also can achieve efficient adsorption for cationic dyes. The results displayed a pseudo-second-order kinetic model and were well matched for MB adsorption onto Cu-GaW-TRZ. The free energy, entropy, and enthalpy of the thermodynamic parameters for the adsorption of MB were calculated, which revealed that the adsorption process was befitting for the adsorption of MB.
Collapse
Affiliation(s)
- Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Hui Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Xin Hu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Zhiming Fan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Yingyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| |
Collapse
|
2
|
Wang G, Guo S, Wu Y, Wu J, Zhang F, Li L, Zhang M, Yao C, Gómez-García CJ, Wang T, Zhang Y, Chen T, Ma H. POMCPs with Novel Two Water-Assisted Proton Channels Accommodated by MXenes for Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202087. [PMID: 35729064 DOI: 10.1002/smll.202202087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.
Collapse
Affiliation(s)
- Guangning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Siyu Guo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Jiaqi Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Lu Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Chengbao Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Carlos J Gómez-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán, Paterna, Valencia, 46980, Spain
| | - Tianyang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yajing Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Tingting Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Huiyuan Ma
- Key Laboratory of Green Chemical Engineering and Technology, School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
3
|
Zhang W, Gong L, Du N, Wang C, Yu K, Wang C, Zhou B. {BW 12O 40} Hybrids Modified by in Situ Synthesized Rigid Ligand with Supercapacitance and Photocatalytic Properties. Inorg Chem 2021; 60:16357-16369. [PMID: 34669382 DOI: 10.1021/acs.inorgchem.1c02174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic rigid ligand-modified polyoxometalate-based materials possess complex and diverse structures, promising electrochemical energy storage properties and outstanding photocatalytic capabilities. Hence, two new [BW12O40]5-(abbreviated as {BW12O40})-based inorganic-organic hybrids [{Cu(en)2(H2O)}][{Cu(pdc)(en)}{Cu(en)2}(BW12O40)]·2H2O (1) and [{CuI5(pz)6(H2O)4}(BW12O40)] (2) (pdc = 2-picolinate, en = ethylenediamine, pz = pyrazine) were successfully synthesized through a hydrothermal method. Among them, pdc and pz were obtained by in situ transformation from 2,6-pyridinedicarboxylic acid (H2 pydc) and 2,3-pyrazinedicarboxylic acid (H2pzdc), respectively. In compound 1, the {BW12O40} clusters as an intermediate junction connect with {Cu(pdc)(en)}{Cu(en)2} and {Cu(en)2(H2O)} to form monomers, which in turn form supramolecular chains, sheets, and space network via hydrogen bonding. The {BW12O40} clusters are packed into copper-pyrazine frameworks in compound 2, and a unique polyoxometalate-based metal organic frameworks (POMOFs) structure with a new topology of {12}2{6.123.142}2{62.12.142.18}{62.123.16}{6}6 is formed via covalent bonds. When used as electrode materials for supercapacitors, the values of specific capacitance are 651.56 F g-1 for 1-GCE and 584.43 F g-1 for 2-GCE at a current density of 2.16 A g-1 and good cycling stability (90.94%, 94.81% of the initial capacity after 5000 cycles at 15.12 A g-1, respectively). The kinetic analysis reveals that surface capacitance plays a major role. Furthermore, both compounds can effectively degrade Rhodamine B (RhB) and Methylene blue (MB), showing the outstanding photocatalytic performance.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Lige Gong
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Nana Du
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| |
Collapse
|