1
|
Rajesh Kumar T, Premkumar R, Langeswaran K, Ramavenkateswari K, Anitha S, Sangavi P, Sangeetha R. Virtual screening, molecular docking, molecular dynamics and quantum chemical studies on (2-methoxy-4-prop-2-enylphenyl) N-(2-methoxy-4-nitrophenyl) carbamate: a novel inhibitor of hepatocellular carcinoma. J Biomol Struct Dyn 2023; 41:13595-13604. [PMID: 37010992 DOI: 10.1080/07391102.2023.2192795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/29/2023] [Indexed: 04/04/2023]
Abstract
HDAC protein is associated with hepatocellular carcinoma. Different medicinal plants were selected for this study to analyze the inhibitory efficacy against the target protein, HDAC. Using virtual screening, we filtered out the best compounds, and molecular docking (XP) was carried out for the top compounds which filtered out. The molecular docking results showed that the title compound (2-methoxy-4-prop-2-enylphenyl) N-(2-methoxy-4-nitrophenyl) carbamate (MEMNC) has the highest docking score of about -7.7 kcal/mol against the targeted protein histone deacetylase (HDAC) compared with the other selected phytocompounds. From the molecular dynamics analysis, the RMSD and RMSF plots depicted the overall stability of the protein-ligand complex. Toxicity properties show the acceptable range of various kinds of toxicity that were predicted using the ProTox-II server. In addition, DFT quantum chemical and physicochemical properties of the MEMNC molecule were reported. Initially, the molecular structure of the MEMNC molecule was optimized and harmonic vibrational frequencies were calculated using DFT/B3LYP method with a cc-pVTZ basis set using Gaussian 09 program. The calculated vibrational wavenumber values were assigned based on Potential Energy Distribution calculations using the VEDA 4.0 program and correlated well with the previous literature values. The molecule has bioactivity as a result of intramolecular charge transfer interactions, as demonstrated by frontier molecular orbital analysis. Molecular electrostatic potential surface and Mulliken atomic charge distribution analyses validate the reactive sites of the molecule. Thus, the title compound can be used as a potential inhibitor of HDAC protein, which paves the way for designing novel drugs to treat Hepatocellular carcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- T Rajesh Kumar
- Department of Physics, G.T.N. Arts College, Dindigul, Tamil Nadu, India
| | - R Premkumar
- Department of Physics, N.M.S.S.V.N. College, Nagamalai, Madurai, Tamil Nadu, India
| | - K Langeswaran
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | | | - S Anitha
- Department of Physics, Arulmigu Palaniandavar College of Arts and Science, Palani, Tamil Nadu, India
| | - P Sangavi
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - R Sangeetha
- Department of Physics, Mannar Thirumalai Naicker College, Pasumalai, Madurai, Tamil Nadu, India
| |
Collapse
|
2
|
J. AHM, R. P, R. S, A. L, K. L. Structural, Quantum Chemical, Molecular Docking, and Dynamics Studies of Quercetin—A Potent Inhibitor for Colon Cancer. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | - Premkumar R.
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, India
| | - Sangeetha R.
- Department of Physics, Mannar Thirumalai Naicker College, Madurai, India
| | - Lakshmi A.
- Department of Physics, Mannar Thirumalai Naicker College, Madurai, India
| | - Langeswaran K.
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, India
| |
Collapse
|
3
|
Geetha R, Meera MR, Vijayakumar C, Premkumar R, Arul Prakash P, Mohamed Jaabir MS. Synthesis, Spectroscopic Characterization, Molecular Docking and in Vitro Cytotoxicity Evaluation Studies on 6-Methoxy-8-Nitroquinoline Hydrogen Sulphate: A Novel Cervical Cancer Drug. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2091619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- R. Geetha
- Department of Physics, St. Jude’s College, Thoothoor, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India)
| | - M. R. Meera
- Department of Physics, Sree Ayyappa College for Women, Nagercoil, Tamil Nadu, India
| | - C. Vijayakumar
- Department of Physics, St. Jude’s College, Kanyakumari, Tamil Nadu, India
| | - R. Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, Tamil Nadu, India
| | - P. Arul Prakash
- Department of Biotechnology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - M. S. Mohamed Jaabir
- Department of Biotechnology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
4
|
Sangeetha R, Premkumar R, Maithili SS, Kirubhanand C, Gowtham Kumar S, Sangavi P, Langeswaran K. Spectroscopic, Solvent Effect, Molecular Docking and Molecular Dynamics Investigations on Phytocompounds from Elettaria cardamomum against Covid-19. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2086270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R. Sangeetha
- Department of Physics, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India
| | - R. Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, Tamil Nadu, India
| | | | - C. Kirubhanand
- Department of Anatomy, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - S. Gowtham Kumar
- Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education (Deemed to Be University), Kelambakkam, Tamil Nadu, India
| | - P. Sangavi
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K. Langeswaran
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Premkumar R, Hussain S, Jayram ND, Koyambo-Konzapa SJ, Revathy M, Mathavan T, Milton Franklin Benial A. Adsorption and orientation characteristics of 1-methylpyrrole-2-carbonyl chloride using SERS and DFT investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Ramuthai M, Jeyavijayan S, Premkumar R, Uma Priya M, Jayram ND. Structure, Spectroscopic Investigation, Molecular Docking and In vitro Cytotoxicity Studies on 4,7-dihydroxycoumarin: A Breast Cancer Drug. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022. [DOI: 10.1142/s2737416522500119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coumarin derivatives are broadly used as anti-inflammatory, antioxidants, anticancer, and antiviral drugs in recent years. In particular, hydroxy coumarins have great importance because of their various biological and pharmacological purposes. The quantum chemical studies of 4,7-dihydroxycoumarin (DHC) have been performed using the cc-pVTZ level of basis set. The DHC molecular structure has been optimized and the computed frequency assignments have been correlated well with the experimental results. The experimental [Formula: see text]C NMR shifts of DHC have been compared with the computed [Formula: see text]C NMR in the dimethyl sulfoxide (DMSO) solution using the Gauge-invariant atomic orbital (GIAO) method. The electron delocalization within the DHC is shown by highest occupied molecular orbitals (HOMO)-lowest unoccupied molecular orbitals (LUMO) energy analysis, and the resulting small energy gap value reveal the molecule’s bioactive characteristics. The natural bond orbital (NBO) analysis approves the bioactive property of the DHC molecule. The DHC compound has a cytotoxic impact on the MCF-7 breast cancer cell line, according to in vitro cytotoxicity studies. The docking study approves that the DHC works as a new inhibitor of breast cancer targeted proteins such as epidermal growth factor receptor (EGFR), estrogen receptor (ER), and progesterone receptor (PR). Thus, this work covers the approach for the evolution of new drugs against breast cancer.
Collapse
Affiliation(s)
- M. Ramuthai
- Department of Physics, Kalasalingam Academy of Research and Education Krishnankoil, 626126 Tamil Nadu, India
| | - S. Jeyavijayan
- Department of Physics, Kalasalingam Academy of Research and Education Krishnankoil, 626126 Tamil Nadu, India
| | - R. Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College Madurai, 625019 Tamil Nadu, India
| | - M. Uma Priya
- Department of Biotechnology, Kalasalingam Academy of Research and Education Krishnankoil 626126 Tamil Nadu, India
| | - Naidu Dhanpal Jayram
- Department of Physics, Kalasalingam Academy of Research and Education Krishnankoil, 626126 Tamil Nadu, India
| |
Collapse
|