1
|
Alhazmi F, Morad M, Abou-Melha K, El-Metwaly NM. Synthesis and Characterization of New Mixed-Ligand Complexes; Density Functional Theory, Hirshfeld, and In Silico Assays Strengthen the Bioactivity Performed In Vitro. ACS OMEGA 2023; 8:4220-4233. [PMID: 36743043 PMCID: PMC9893480 DOI: 10.1021/acsomega.2c07407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
N'-Acetyl-2-cyanoacetohydrazide (H2L1) and 2-cyano-N-(6-ethoxybenzo thiazol-2-yl) acetamide (HL2) ligands were used to synthesize [Cr(OAc)(H2L1)(HL2)]·2(OAc) and [Mn(H2L1)(HL2)]·Cl2·2H2O as mixed ligand complexes. All new compounds were analyzed by analytical, spectral, and computational techniques to elucidate their chemical formulae. The bidentate nature was suggested for each coordinating ligand via ON donors. The electronic transitions recorded are attributing to 4A2g(F) → 4T2g(F)(υ2) and 4A2g(F) → 4T1g(F)(υ3) types in the octahedral Cr(III) complex, while 6A1 → 4T2(G) and 6A1 → 4T1(G) transitions are attributing to the tetrahedral Mn(II) complex. These complexes were optimized by the density functional theory method to verify the bonding mode which was suggested via N(3), O(8), N(9), and N(10) donors from the mixed-ligands. Hirshfeld crystal models were demonstrated for the two ligands to indicate the distance between the functional groups within the two ligands and supporting the exclusion of self-interaction in between. Finally, the biological activity of the two mixed ligand complexes was tested by in silico ways as well as in vitro ways for confirmation. Three advanced programs were applied to measure the magnitude of biological efficiency of the two complexes toward kinase enzyme (3nzs) and breast cancer proliferation (3hy3). All in silico data suggest the superiority of the Mn(II) complex. Moreover, the in vitro assays for the two complexes that measure their antioxidant and cytotoxic activity support the distinguished activity of the Mn(II) complex.
Collapse
Affiliation(s)
- Farhi
S. Alhazmi
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21961, Saudi Arabia
| | - Moataz Morad
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21961, Saudi Arabia
| | - Khlood Abou-Melha
- Department
of Chemistry, Faculty of Science, King Khalid
University, Abha 61421, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21961, Saudi Arabia
| |
Collapse
|
2
|
Synthesis and catalytic performance of banana cellulose nanofibres grafted with poly(ε-caprolactone) in a novel two-dimensional zinc(II) metal-organic framework. Int J Biol Macromol 2022; 224:568-577. [DOI: 10.1016/j.ijbiomac.2022.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
3
|
Synthesis of new Cr(III) complexes derived from antipyrine-based ligands: Elucidation, conformation, cytotoxicity and genotoxicity via in-vitro and in-silico approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Development of phenothiazine-based fluorescent probe with aggregation induced emission (AIE) for detection of hydrazine and its application in imaging of living cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Almalki SA, Bawazeer TM, Asghar B, Alharbi A, Aljohani MM, Khalifa ME, El-Metwaly N. Synthesis and characterization of new thiazole-based Co(II) and Cu(II) complexes; therapeutic function of thiazole towards COVID-19 in comparing to current antivirals in treatment protocol. J Mol Struct 2021; 1244:130961. [PMID: 34188314 PMCID: PMC8222988 DOI: 10.1016/j.molstruc.2021.130961] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Two thiazole-based complexes were prepared from Co(II) and Cu(II) ions. The new ligand and its complexes were fully characterized by analytical and spectral techniques. The ligand behaved as a neutral tridentate in its keto-form towards the metals via O(8), O(10) and O(18) atoms. This was suggested based on the lower shift of υ(CH[bond, double bond]O), υ(C[bond, double bond]O)amide and υ(C-O) vibrations. The electronic transitions in Co(II)-HL and Cu(II)-HL complexes displayed d-d- transitions which belong to 4T1g→4A2g(F) & 4T1g(F)→4T1g (P) and 2Eg →2T2g, in the two complexes, respectively. ESR spectrum of Cu(II)-HL complex displayed g-factor by the following order; g//(2.1740)>g⊥(2.0935)>2.0023, which agrees with octahedral geometry. The geometry optimization was executed by DFT/B3LYP method under valence double zeta polarized basis set (6-31G*), to confirm the structural forms and the mode of bonding. The orientation and the charges of O(8), O(10) and O(18) atoms, support the coordination of the ligand in its keto-form with the metal ions. Pharmacophore profiles were obtained regarding thiazole ligand and other recommended drugs (arbidol, avigan and idoxuridine) that used in treatment protocol of COVID-19 pandemic. Also, query was run in MolPort-library to obtain antiviral analogues, to broaden the search for an effective treatment. Three analogues were obtained for arbidol, avigan and idoxuridine drugs, which have the following numbers; MolPort-047-605-644, MolPort-004-768-508 and MolPort-028-750-709, respectively. Moreover, molecular docking was carried out to obtain all interaction details and rank the efficiency of thiazole compound versus the three antivirals in their interaction with the two COVID-19 proteins. The outcomes suggested the significant antiviral activity of idoxuridine and thiazole (enol-form), which not reach to eliminate the pandemic exactly. While, arbidol and avigan did not have an effective antiviral role, although they still used in COVID-19 treatment protocol.
Collapse
Affiliation(s)
- Samira A Almalki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tahani M Bawazeer
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Basim Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arwa Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed E Khalifa
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nashwa El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Synthesis and characterization for new Mn(II) complexes; conductometry, DFT, antioxidant activity via enhancing superoxide dismutase enzymes that confirmed by in-silico and in-vitro ways. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|