1
|
R D, S W, D P D, R S. Cracking a cancer code DNA methylation in epigenetic modification: an in-silico approach on efficacy assessment of Sri Lanka-oriented nutraceuticals. J Biomol Struct Dyn 2024:1-21. [PMID: 38425013 DOI: 10.1080/07391102.2024.2321235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
DNA methyltransferase (DNMTs) are essential epigenetic modifiers that play a critical role in gene regulation. These enzymes add a methyl group to cytosine's 5'-carbon, specifically within CpG dinucleotides, using S-adenosyl-L-methionine. Abnormal overexpression of DNMTs can alter the gene expression patterns and contribute to cancer development in the human body. Therefore, the inhibition of DNMT is a promising therapeutic approach to cancer treatment. This study was aimed to identify potential nutraceutical inhibitors from the Sri Lanka Flora database using computational methods, which provided an atomic-level description of the drug binding site and examined the interactions between nutraceuticals and amino acids of the DNMT enzyme. A series of nutraceuticals from Sri Lanka-oriented plants were selected and evaluated to assess their inhibitory effects on DNMT using absorption, distribution, metabolism, excretion and toxicity analysis, virtual screening, molecular docking, molecular dynamics simulation and trajectory analysis. Azacitidine, a DNMT inhibitor approved by the US Food and Drug Administration, was selected as a reference inhibitor. The complexes with more negative binding energies were selected and further assessed for their potency. Seven molecules were identified from 200 nutraceuticals, demonstrating significantly negative binding energies against the DNMT enzyme. Various trajectory analyses were conducted to investigate the stability of the DNMT enzyme. The results indicated that petchicine (NP#0003), ouregidione (NP#0011) and azacitidine increased the stability of the DNMT enzyme. Consequently, these two nutraceuticals showed inhibitory efficacies similar to azacitidine, making them potential candidates for therapeutic interventions targeting DNMT enzyme-related cancers. Additional bioassay testing is recommended to confirm the efficacies of these nutraceuticals and explore their applicability in clinical treatments.
Collapse
Affiliation(s)
- Dushanan R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| | - Weerasinghe S
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Dissanayake D P
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Senthilnithy R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| |
Collapse
|
2
|
Paligaspe PR, Weerasinghe S, Dissanayake DP, Senthilnithy R, Abeysinghe T, Jayasinghe CD. Computational investigation of impact of Pb(II) and Ni(II) ions on hUNG enzyme: insights from molecular dynamics simulations. J Biomol Struct Dyn 2024:1-10. [PMID: 38279925 DOI: 10.1080/07391102.2024.2307442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
Human uracil DNA glycosylase (hUNG), a crucial player in the initiation of the base excision repair pathway, is susceptible to alterations in function and conformation induced by the accumulation of toxic metals. Despite the recognized impact of toxic metals on DNA repair enzymes, there exists a notable deficiency in theoretical investigations addressing this phenomenon. This study investigates the impact of toxic heavy metal ions, Pb(II) and Ni(II), on the stability of hUNG through molecular dynamics (MD) simulations. The initial analysis involved the identification of key cavities in the hUNG enzyme. Notably, the active site cavity emerged as a promising site for ligand binding. Subsequently, AutoDockTools software was employed to dock Pb(II) and Ni(II) onto the identified cavities, followed by extensive MD simulations. The MD analysis, encompassing parameters such as root mean square deviation, radius of gyration, solvent accessible surface area, hydrogen bond variations, Ramachandran plot, principal component analysis, and root mean square fluctuations, collectively revealed distinct alterations in the behavior of the enzyme upon complexation with Pb(II) and Ni(II). Interestingly, the enzyme exhibited enhanced structural stability, reduced flexibility, and modified hydrogen bonding patterns in the presence of these toxic metal ions. The observed limitation in structural flexibility implies a more rigid and stable conformation when the enzyme complex with Pb(II) and Ni(II) compared to its free form. This structural alteration may lead to a potential reduction in enzymatic activity, suggesting that toxic metal ions influence the functional dynamics of hUNG. These computational findings offer valuable insights into the molecular interactions between metal ions and enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyani R Paligaspe
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Thelma Abeysinghe
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Chanika D Jayasinghe
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| |
Collapse
|
3
|
Kapoor S, Chatterjee DR, Chowdhury MG, Das R, Shard A. Roadmap to Pyruvate Kinase M2 Modulation - A Computational Chronicle. Curr Drug Targets 2023; 24:464-483. [PMID: 36998144 DOI: 10.2174/1389450124666230330103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 04/01/2023]
Abstract
Pyruvate kinase M2 (PKM2) has surfaced as a potential target for anti-cancer therapy. PKM2 is known to be overexpressed in the tumor cells and is a critical metabolic conduit in supplying the augmented bioenergetic demands of the recalcitrant cancer cells. The presence of PKM2 in structurally diverse tetrameric as well as dimeric forms has opened new avenues to design novel modulators. It is also a truism to state that drug discovery has advanced significantly from various computational techniques like molecular docking, virtual screening, molecular dynamics, and pharmacophore mapping. The present review focuses on the role of computational tools in exploring novel modulators of PKM2. The structural features of various isoforms of PKM2 have been discussed along with reported modulators. An extensive analysis of the structure-based and ligand- based in silico methods aimed at PKM2 modulation has been conducted with an in-depth review of the literature. The role of advanced tools like QSAR and quantum mechanics has been established with a brief discussion of future perspectives.
Collapse
Affiliation(s)
- Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air force Station Palaj, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
4
|
Paligaspe P, Weerasinghe S, Dissanayake DP, Senthilnithy R. Impact of Cd(II) on the stability of human uracil DNA glycosylase enzyme; an implication of molecular dynamics trajectories on stability analysis. J Biomol Struct Dyn 2022; 40:14027-14034. [PMID: 34738875 DOI: 10.1080/07391102.2021.1999329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Uracil DNA glycosylase is a key enzyme that identifies and removes damaged bases from DNA in the base excision repair pathway. Experimentalists have identified the possibility of Cd(II) reducing the activity of human uracil DNA glycosylase (hUNG) by binding with the enzyme replacing the catalytic water molecule. The present study focus on the stability variation of the enzyme in the presence and absence of Cd(II) and confirms the reported results with the stability analysis done using molecular dynamic (MD) simulation trajectories. The CavityPlus web server identified seven cavities for the free enzyme as possible binding sites and a cavity containing the active site of the enzyme as the best binding cavity for a ligand. Based on the CavityPlus results and the previously reported work, a free hUNG system and two systems of the enzyme with Cd(II); one with Cd(II) replacing the catalytic water molecule in the active site of the enzyme and the other replacing a non-catalytic water molecule in the active site were generated for the simulation. The simulation trajectories were used for the structural stability analysis of the enzyme in all three systems. The binding free energy of the Cd(II) with the enzyme was calculated using molecular mechanics Poisson Boltzmann surface area method. The results showed that the enzyme achieves comparatively high stability with the removal of catalytic water of the enzyme by Cd(II). Therefore, this supports the previously reported idea that Cd(II) replaces catalytic water molecules and affects enzyme activity.
Collapse
Affiliation(s)
- Priyani Paligaspe
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| |
Collapse
|
5
|
Dushanan R, Weerasinghe S, Dissanayake DP, Senthilinithy R. Implication of Ab Initio, QM/MM, and molecular dynamics calculations on the prediction of the therapeutic potential of some selected HDAC inhibitors. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2097672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ramachandren Dushanan
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilinithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| |
Collapse
|