Luo SY, Zeng CM, Xu P, Ning Y, Dong ML, Zhang WH, Yu G. Thiazole Functionalization of Thiosemicarbazone for Cu(II) Complexation: Moving toward Highly Efficient Anticancer Drugs with Promising Oral Bioavailability.
Molecules 2024;
29:3832. [PMID:
39202911 PMCID:
PMC11357102 DOI:
10.3390/molecules29163832]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
In this work, we report the synthesis of a new thiosemicarbazone-based drug of N'-(di(pyridin-2-yl)methylene)-4-(thiazol-2-yl)piperazine-1-carbothiohydrazide (HL) featuring a thiazole spectator for efficient coordination with Cu(II) to give [CuCl(L)]2 (1) and [Cu(NO3)(L)]2 (2). Both 1 and 2 exhibit dimeric structures ascribed to the presence of di-2-pyridylketone moieties that demonstrate dual functions of chelation and intermolecular bridging. HL, 1, and 2 are highly toxic against hepatocellular carcinoma cell lines Hep-G2, PLC/PRF/5, and HuH-7 with half maximal inhibitory concentration (IC50) values as low as 3.26 nmol/mL (HL), 2.18 nmol/mL (1), and 2.54 × 10-5 nmol/mL (2) for PLC/PRF/5. While the free ligand HL may elicit its anticancer effect via the sequestration of bio-relevant metal ions (i.e., Fe3+ and Cu2+), 1 and 2 are also capable of generating cytotoxic reactive oxygen species (ROS) to inhibit cancer cell proliferation. Our preliminary pharmacokinetic studies revealed that oral administration (per os, PO) of HL has a significantly longer half-life t1/2 of 21.61 ± 9.4 h, nearly doubled as compared with that of the intravenous (i.v.) administration of 11.88 ± 1.66 h, certifying HL as an effective chemotherapeutic drug via PO administration.
Collapse