1
|
Jamil S, Gondal HY, Ali A, Hussain A, Akram N, Nisar M, Tahir MN, Ashfaq M, Raza AR, Muhammad S, Cheema ZM, Mustafai A, Sameeh MY. Benzimidazolium quaternary ammonium salts: synthesis, single crystal and Hirshfeld surface exploration supported by theoretical analysis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231094. [PMID: 38356872 PMCID: PMC10864785 DOI: 10.1098/rsos.231094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Owing to the broad applications of quaternary ammonium salts (QAS), we present the synthesis of benzimidazolium-based analogues with variation in the alkyl and alkoxy group at N-1 and N-3 positions. All the compounds were characterized by spectroscopic techniques and found stable to air and moisture both in the solid and solution state. Moreover, molecular structures were established through single-crystal X-ray diffraction studies. The crystal packing of the compounds was stabilized by numerous intermolecular interactions explored by Hirshfeld surface analysis. The enrichment ratio was calculated for the pairs of chemical species to acquire the highest propensity to form contacts. Void analysis was carried out to check the mechanical response of the compounds. Furthermore, theoretical investigations were also performed to explore the optoelectronic properties of compounds. Natural population analysis (NPA) has been conducted to evaluate the distribution of charges on the synthesized compounds, whereas high band gaps of the synthesized compounds by frontier molecular orbital (FMO) analysis indicated their stability. Nonlinear optical (NLO) analysis revealed that the synthesized QAS demonstrates significantly improved NLO behaviour than the standard urea.
Collapse
Affiliation(s)
- Sajid Jamil
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, 38000 Faisalabad Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Multan, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, 38000 Faisalabad Pakistan
| | - Muhammad Nisar
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha, 40100 Pakistan
| | - Abdul Rauf Raza
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia
| | - Zain M. Cheema
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Aleena Mustafai
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Multan, Pakistan
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia
| |
Collapse
|
2
|
Al-Roumy AM, Al-Saymari FA, Sultan HA, Hassan QMA, Elias RS, Alsalim TA, Saeed BA, Emshary CA, Mahdi MA. Nonlinear Optical Properties and All Optical Switching of Curcumin Derivatives. J Fluoresc 2024; 34:283-303. [PMID: 37209224 DOI: 10.1007/s10895-023-03257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
In this work OR1(E1,6E) -1,7-bis (4-propyloxy phenyl) hepta-1,6-diene-3,5 dione compound is synthesized. The compound has been characterized via computational technique by studying the molecule's electronic structures through calculating its HOMO and LUMO energies, and its band gap energy (EHOMO-ELUMO). The nonlinear refractive index (NLRI) of the solution of OR1 compound in DMF solvent is determined using diffraction patterns (DPs) which resulted when a continuous wave laser beam of wavelength 473 nm traversed the compound solution in a glass cell of 1 mm thickness. By counting the number of rings under maximum beam input power, the NLRI of value 10- 6 cm2/W resulted. The NLRI is calculated once more via the Z-scan technique and a value of 0.25 × 10- 7 cm2/W is obtained. The vertical convection current in the OR1 compound solution appears to be responsible for the asymmetries noticed in the DPs. The temporal variation of each DP is noticed together with the evolution of DPs against beam input power. DPs are numerically simulated based on the Fresnel-Kirchhoff integral with good accord compared to the experimental findings. Dynamic and static all-optical switching in the OR1 compound using two laser beams (473 and 532 nm) is tested successfully.
Collapse
Affiliation(s)
- Alaa M Al-Roumy
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - F A Al-Saymari
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - H A Sultan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Qusay M A Hassan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq.
| | - Rita S Elias
- College of Pharmacy, University of Basrah, Basrah, 61001, Iraq
| | - Tahseen A Alsalim
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Bahjat A Saeed
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - C A Emshary
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - M A Mahdi
- Department of Physics, College of Science, University of Basrah, Basrah, 61001, Iraq
| |
Collapse
|
3
|
Assiri MA, Ali A, Ibrahim M, Khan MU, Ahmed K, Hamid Akash MS, Abbas MA, Javed A, Suleman M, Khalid M, Hussain I. Potential anticancer and antioxidant lauric acid-based hydrazone synthesis and computational study toward the electronic properties. RSC Adv 2023; 13:21793-21807. [PMID: 37476049 PMCID: PMC10354594 DOI: 10.1039/d3ra02433d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
The modification of natural products is one of the key areas of synthetic organic chemistry for obtaining valuable chemical building blocks that have medicinal significance. In this study, lauric acid-based hydrazones, namely (E)-N'-(2-nitrobenzylidene)dodecanehydrazide (NBDH), (E)-N'-(naphthalen-1-ylmethylene)dodecanehydrazide (NMDH), and (E)-N'-(4-fluorobenzylidene)dodecanehydrazide (FBDH), were synthesized and characterized using spectroscopic techniques. The newly synthesized lauric acid-based hydrazones were screened for their anticancer and antioxidant potential. The antioxidants showed their activity by inhibiting the oxidative chain reactions that produce reactive oxygen species. The antioxidant activity showed that NBDH exhibited the maximum DPPH inhibitory activity when compared with that of NMDH and FBDH, whereas the anticancer activity showed that FBDH exhibited maximum percent viability when compared to that of NBDH and NMDH. The reactivity and biological needs of the synthesized compounds NBDH, NMDH, and FBDH were met by performing geometrical, FT-IR vibrational, UV-visible, global reactivity parameters (GRP), MEP, FMO, NBO, ELF, LOL, and nonlinear optical (NLO) analysis at the DFT/B3LYP/6-311+G(d,p) level. NBO analysis confirmed the existence of extended conjugation and intramolecular charge transfer among NBDH, NMDH, and FBDH, which have the lowest gap in π → π*, which are in line with the FMO results where successful charge transfer occurred from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). GRP analysis confirmed the potential of NBDH, NMDH, and FBDH for biological, electronic, and NLO applications. It is clear from the comparative analysis of the urea molecule that NBDH, NMDH, and FBDH all comprise fine NLO properties.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | | | - Khalid Ahmed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | | | - Muhammad Akhtar Abbas
- Department of Applied Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Athar Javed
- Department of Applied Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Suleman
- Department of Chemistry, Riphah International University Faisalabad Campus Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan-64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan-64200 Pakistan
| | - Ishtiaq Hussain
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology Mang Haripur Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
4
|
Gunavathi S, Venkateswaramoorthi R, Arulvani K, Bharanidharan S. Synthesis, Spectral Characterization, Density Functional Theory Investigation and Molecular Docking Studies of Formohydrazide‐Based Hydrazones as Potential Antimicrobial Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- S. Gunavathi
- Department of Chemistry PGP College of Arts and Science Namakkal 637207 Tamil Nadu India
| | - R. Venkateswaramoorthi
- Department of Chemistry PGP College of Arts and Science Namakkal 637207 Tamil Nadu India
| | - K. Arulvani
- Department of Chemistry PGP College of Arts and Science Namakkal 637207 Tamil Nadu India
| | - S. Bharanidharan
- Department of Physics Panimalar Engineering College Chennai 600123 Tamil Nadu India
| |
Collapse
|
5
|
Odey DO, Louis H, Ita DK, Edet HO, Ashishie PB, Gber TE, Akinterinwa A, Effa AG. Intermolecular interactions of cytosine DNA nucleoside base with Gallic acid and its Methylgallate and Ethylgallate derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202203832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Diana O. Odey
- Department of Biochemistry Cross River University Nigeria
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry University of Calabar Calabar Nigeria
| | - Dollars K. Ita
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry University of Calabar Calabar Nigeria
| | - Henry O. Edet
- Department of Biochemistry Cross River University Nigeria
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Providence B. Ashishie
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry University of Calabar Calabar Nigeria
| | - Terkumbur E. Gber
- Department of Biochemistry Cross River University Nigeria
- Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria
| | - Ayodele Akinterinwa
- Department of Pure and Applied Chemistry University of Calabar Calabar Nigeria
| | - Anagbogu G. Effa
- Department of Pure and Applied Chemistry University of Calabar Calabar Nigeria
| |
Collapse
|
6
|
Synthesis, Photoswitching Behavior and Nonlinear Optical Properties of Substituted Tribenzo[ a, d, g]coronene. Molecules 2023; 28:molecules28031419. [PMID: 36771085 PMCID: PMC9919552 DOI: 10.3390/molecules28031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
A family of tribenzocoronene derivatives bearing various substituents (3) were constructed through the Diels-Alder reaction, followed by the Scholl oxidation, where the molecular structure of 3b was determined via single crystal X-ray diffraction analysis. The effect of substitution on the optical and electrochemical property was systematically investigated, with the assistance of theoretical calculations. Moreover, the thin films of the resulting molecules 3b and 3e complexed with fullerene produced strong photocurrent response upon irradiation of white light. In addition, 3b and 3e exhibit a positive nonlinear optical response resulting from the two-photon absorption and excited state absorption processes.
Collapse
|
7
|
John NL, Abraham S, George J, Aswathy P, Sivasubramani V. Growth, Quantum Chemical Computations, NLO and Spectroscopic Studies of 2-Amino 5-Chloro Pyridine Single Crystal in Comparison with Certain Aminopyridine Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Singh A, Barman P, Gogoi HP. Influence of Steric and Electronic Effects in Structure‐Activity Relationships of Schiff Base Ligands: Green Synthesis, Characterization, DFT/TD‐DFT Calculations, Molecular Docking and Biological Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202204043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anmol Singh
- Department of Chemistry National Institute of Technology Silchar Assam India- 788010
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India- 788010
| | - Himadri Priya Gogoi
- Department of Chemistry National Institute of Technology Silchar Assam India- 788010
| |
Collapse
|
9
|
Ali A, Ashfaq M, Din ZU, Ibrahim M, Khalid M, Assiri MA, Riaz A, Tahir MN, Rodrigues-Filho E, Imran M, Kuznetsov A. Synthesis, Structural, and Intriguing Electronic Properties of Symmetrical Bis-Aryl-α,β-Unsaturated Ketone Derivatives. ACS OMEGA 2022; 7:39294-39309. [PMID: 36340158 PMCID: PMC9631725 DOI: 10.1021/acsomega.2c05441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Three symmetrical bis-aryl-α,β-unsaturated ketone derivatives, 2,6-di((E)-benzylidene)-cyclohexan-1-one (DBC), 2,6-bis((E)-4-chlorobenzylidene)cyclohexan-1-one (BCC), and (1E,1'E,4E,4'E)-5,5'-(1,4-phenylene)bis(2-methyl-1-phenylpenta-1,4-dien-3-one) (PBMP), have been prepared using the aldol condensation approach toward ketones having two enolizable sites. The structures of DBC, BCC, and PBMP have been resolved via spectrometric methods. Moreover, the crystal structure of PBMP is determined by the single-crystal X-ray diffraction (SC-XRD) technique, which revealed that the PBMP molecular assembly is stabilized by the intermolecular C-H···O bonding and C-O···π and weak T-shaped offset π···π stacking interactions. The Hirshfeld surface analysis (HSA) of the PBMP crystal structure was performed as well, and the results were compared with the results of DBC and BCC. The density functional theory (DFT) study results revealed that the longer conjugated molecule of PBMP has smaller but still quite significant HOMO-LUMO gaps compared to the smaller molecules of BCC and DBC. The natural population analysis (NPA) and natural bonding orbital (NBO) analysis were performed. Accordingly, the hydrogen bonding and dipole-dipole interactions stabilize the crystal structures of these compounds. Additionally, the NBO analysis showed numerous high-energy stabilizing interactions for the PBMP compound due to the presence of numerous delocalized and relatively easily polarizable π-electrons, thus implying its significant thermodynamic stability. According to the global reactivity parameter (GRP) analysis, the compounds BCC and DBC are relatively stable in redox processes and have high thermodynamic stability and relatively lower reactivity in general. The molecular electrostatic potential (MEP) analysis results imply potential formation of the intermolecular hydrogen bonding and dispersion interactions, which stabilizes the crystal structures of these compounds.
Collapse
Affiliation(s)
- Akbar Ali
- Department
of Chemistry, Government College University, Faisalabad38040, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha40100, Pakistan
| | - Zia Ud Din
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan64200, Pakistan
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Arish Riaz
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | | | - Edson Rodrigues-Filho
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Imran
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Aleksey Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura7660251, Chile
| |
Collapse
|
10
|
Blanco-Acuña EF, García-Ortega H. Synthesis, photophysical behavior in solution, aggregates, solid state and computational study of new derivatives of 2,2′-bis(indolyl)methane-triphenylamine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|