1
|
Hashem MS, Sobh RA, Fahim AM, Elsayed GH. Alginate sulfonamide hydrogel beads for 5-fluorouracil delivery: antitumor activity, cytotoxicity assessment, and theoretical investigation. Int J Biol Macromol 2024; 282:136573. [PMID: 39426771 DOI: 10.1016/j.ijbiomac.2024.136573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
This study focused on grafting a new monomer (E)-N-(4-(3-(4-bromophenyl) acryloyl) phenyl)-4-methyl benzene sulfonamide (Br-PS) onto sodium alginate (Alg) using a free radical polymerization method. The optimal parameters for the grafting polymerization reaction were investigated, including initiator and monomer concentrations, polymerization reaction duration, and temperature. Additionally, the conversion, graft, and solid content percentages were calculated. The resulting novel poly (Br-PS)-g-Alg was thoroughly analyzed using Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Moreover, poly (Br-PS)-g-Alg was tested for cytotoxicity and selectivity values on lung cancer cell line (A549), breast cancer cell line (MDA-MB-231), and a normal cell line (MDCK) using the neutral red uptake test. Poly (Br-PS)-g-Alg demonstrated more inhibitory impact (IC50 = 33.37 and 40.9 μg/mL) and high selectivity (selectivity index = 4.83 and 3.94) on the A549 and MDA-MB-231 cell lines, respectively. Furthermore, uniform beads of creative poly (Br-PS)-g-Alg were fabricated, and their swelling rate in various media was studied. These beads could potentially serve as drug carriers for 5-fluorouracil (5-FU). Release experiments in simulated gastric (SGF) and intestinal fluids (SIF) showed a slower 5-FU release pattern in SGF compared to SIF. The proposed structures of poly (Br-PS)-g-Alg were theoretically verified using density functional theory with DFT/B3LYP/6-31(G) basis set, revealing distinct interactions due to the presence of different functional groups. The findings of this study could significantly impact the development of new drug delivery systems.
Collapse
Affiliation(s)
- M S Hashem
- Polymers and Pigments Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt.
| | - Rokaya A Sobh
- Polymers and Pigments Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Asmaa M Fahim
- Department of Green Chemistry, National Research Centre (NRC), Dokki, Giza 12622, Egypt.
| | - Ghada H Elsayed
- Hormones Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt; Stem Cells Lab, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Fahim AM, Dacrory S, Hashem AH, Kamel S. Antimicrobial, anticancer activities, molecular docking, and DFT/B3LYP/LANL2DZ analysis of heterocyclic cellulose derivative and their Cu-complexes. Int J Biol Macromol 2024; 269:132027. [PMID: 38702001 DOI: 10.1016/j.ijbiomac.2024.132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
In this study, novel Cu-complexes of heterocyclic cellulose which were synthesized via the reaction of carboxymethyl cellulose (CMC) from bagasse pulp with NH2NH2 to give hydrazide cellulose which easily reacted with CS2 to form salt and then cyclized in the presence of HCl to afford cellulose oxadiazole, or with hydrazine hydrate to give cellulose triazole. Furthermore, the cellulose oxadiazole and triazole moieties acting as chelating agents with metal ion Cu (II), and all synthesized compounds were examined for their spectral analysis to show the adsorption of Cu (II) on the surface of cellulose through intramolecular hydrogen bonding. Results illustrated that cellulose oxadiazole and Cu- cellulose oxadiazole exhibited antimicrobial activities more than triazole and Cu- cellulose triazole. Furthermore, anticancer results showed that both cellulose oxadiazole and triazole exhibited activity higher than Cu-cellulose oxadiazole and Cu-cellulose triazole, where the cellulose triazole showed the highest activity (IC50 = 58.7 μg/μL). Additionally, the docking simulation of the synthesized cellulose complexes with different proteins such as PDBID:3t88, PDBID:4ynt, PDBID:1tgh, PDBID:2wje, and PDBID:4hdq and shortage bond length to confirm the experimental results. Optimization of metal complexes utilized the DFT/B3LYP/LANL2DZ basis set to confirm the stability of these metals theoretically and their physical descriptors and FMO analysis.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Department of Green Chemistry, National Research Centre, Dokki, P.O. Box.12622, Cairo, Egypt
| | - Sawsan Dacrory
- Cellulose and paper Department, National Research Centre, Giza 12622, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Samir Kamel
- Cellulose and paper Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
3
|
Hashem MS, Fahim AM, Helaly FM. Designing a green poly(β-amino ester) for the delivery of nicotinamide drugs with biological activities and conducting a DFT investigation. RSC Adv 2024; 14:5499-5513. [PMID: 38352682 PMCID: PMC10862102 DOI: 10.1039/d3ra08585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The environmentally friendly polymerization process was carried out using microwave irradiation without additional solvents or catalysts to produce poly(β-amino ester) (PβAE) which served as a drug delivery system. PβAE was synthesized through Michael addition polymerization of 1,4-butane diol diacrylate and piperazine. Swelling and biodegradation studies were conducted in various solvents and phosphate-buffered saline (PBS, pH 7.4) at 37 °C to evaluate the properties of the polymeric gel. The PβAE matrix demonstrated solubility enhancement for hydrophobic antimicrobial and antitumor-active nicotinamide derivatives (TEINH, APTAT, and MOAPM), controlling their release over 10 days in (PBS). The successful formation of free and loaded PβAE with nicotinamide active materials was confirmed by spectroscopic analysis including Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Optimization and physical descriptor determination via the DFT/B3LYP-631(G) basis set were performed to aid in the biological evaluation of these compounds with elucidation of their physical and chemical interaction between poly(β-amino ester) and nicotinamide drugs.
Collapse
Affiliation(s)
- M S Hashem
- Polymers and Pigments Department, National Research Centre Dokki, P.O. Box. 12622 Giza Egypt
| | - Asmaa M Fahim
- Department of Green Chemistry, National Research Centre Dokki, P.O. Box. 12622 Giza Egypt
| | - F M Helaly
- Polymers and Pigments Department, National Research Centre Dokki, P.O. Box. 12622 Giza Egypt
| |
Collapse
|
4
|
Wang Y, Wu X, Shao G, Zhai B, Wang Z, Qin B, Wang T, Liu Z, Fu Y. Novel molecularly imprinted aerogels: Preparation, characterization, and application in selective separation for oleanolic acid in lingonberry. Talanta 2024; 266:124983. [PMID: 37542848 DOI: 10.1016/j.talanta.2023.124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An oleanolic acid (OA) surface molecularly imprinted polymer silylated porous composite aerogels (OA-MIP@Si-PC-aerogels) adsorbent material was successfully prepared and characterized. The material not only has a great selectivity for the target molecule OA but also has other noteworthy qualities including high stability, excellent repeatability, and a sizable adsorption capacity. via cellulose and sodium alginate as the main materials, the carrier Si-PC-aerogels were made through ionic cross-linking, chemical cross-linking, and silylation procedures. By adopting a surface molecular imprinting approach on Si-PC-aerogels, OA-MIP@Si-PC-aerogels were effectively created utilizing OA as the template molecule and MAA as the functional monomer. Due to the presence of a specific imprinted layer on the aerogel surface, the adsorption capacity of OA-MIP@Si-PC-aerogels for OA could reach 66.20 mg g-1. OA-MIP@Si-PC-aerogels could achieve a 68.86% yield of OA from the extracts of lingonberry (Vaccinium Vitis-Idaea L.). The adsorption capacity remained at 90% after five consecutive adsorption-desorption cycles. HepG2 cells were exposed to OA that was effectively enriched with OA-MIP@Si-PC-aerogels in lingonberry (Vaccinium Vitis-Idaea L.) fruit homogenates. This OA significantly inhibited the growth of HepG2 cells in vitro. It further demonstrated that OA-MIP@Si-PC-aerogels could efficiently target OA enrichment and separation with good recovery.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Bowen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
5
|
Fahim AM, Dacrory S, Elsayed GH. Anti-proliferative activity, molecular genetics, docking analysis, and computational calculations of uracil cellulosic aldehyde derivatives. Sci Rep 2023; 13:14563. [PMID: 37666882 PMCID: PMC10477303 DOI: 10.1038/s41598-023-41528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
In this study, the oxidation of microcrystalline cellulose using NaIO4 to yield the corresponding cellulose aldehyde utilized microwave irradiation as a green tool, the obtained cellulosic aldehyde was confirmed through spectral analysis and it has an active site to react with the synthesized uracil acetamide to afford the corresponding arylidene cellulosic MDAU(4), the latter compound which can easily due to presence of active CH=group behind a cyano group react with nitrogen nucleophile's and cyclized with hydrazine hydrate to give pyrazole cellulosic MDPA(5). The spectral analysis of the obtained cellulosic derivatives was confirmed with FT-IR, NMR, and SEM. Additionally, a neutral red uptake analysis has been used to investigate the cytotoxic activity of the cellulosic compounds MDAC(2), MDAU(4), and MDAP(5) against the cancer cells A549 and Caco2. After 48 h, Compound MDAU(4) had a stronger inhibitory effect on the growth of A549 and Caco2, compared to standard values. Then, using QRT-PCR, the appearance sites of the genes -Catenin, c-Myc, Cyclin D1, and MMP7 in A549 cells were examined. By reducing the expression levels of the Wnt signaling cascade genes -Catenin, c-Myc, Cyclin D1, and MMP7 when administered to A549 cells, compound MDAU(4) was shown in this investigation to be a viable candidate compared to lung cancer. Additionally, docking simulation was used to explore the uracil cellulosic heterocycles attached to different proteins, and computational investigations of these compounds looked at how well their physical characteristics matched the outcomes of their experiments.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Green Chemistry Department, National Research Centre (NRC), P.O. Box 12622, DokkiCairo, Egypt.
| | - Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, P.O. Box 12622, Giza, Egypt
| | - Ghada H Elsayed
- Department of Hormones, National Research Centre (NRC), P.O. Box 12622, Dokki, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre (NRC), P.O. Box 1262, Dokki, Giza, Egypt
| |
Collapse
|
6
|
El-Shall FN, Fahim AM, Dacrory S. Making a new bromo-containing cellulosic dye with antibacterial properties for use on various fabrics using computational research. Sci Rep 2023; 13:10066. [PMID: 37344546 DOI: 10.1038/s41598-023-36688-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
The reaction of cyanoethyl cellulose with para-bromo diazonium chloride resulted in the creation of a novel bromo-containing cellulosic (MCPT). The dispersion stability of MCPT has been improved by its dispersion into 1% waterborne polyurethane acrylate (WPUA). TEM, particle size, and zeta potential were used to track the dispersion stability of aqueous MCPT and MCPT in 1% WPUA and particle size. The prepared MCPT has been utilized as a unique green colorant (dye) for the printing of cotton, polyester, and cotton/polyester blend fabrics using a silkscreen printing technique through a single printing step and one color system. Color improvement has been achieved by printing different fabrics with a printing paste of MCPT dispersed in 1% WPUA. The MCPT and MCPT in 1% WPUA printed fabrics were evaluated for rubbing, light, washing, and perspiration fastness, UV blocking activity, and antibacterial activity. These findings were established through structural optimization at the DFT/B3LYP/6-31 (G) level and simulations involving several proteins.
Collapse
Affiliation(s)
- Fatma N El-Shall
- Dyeing, Printing and Textile Auxiliaries Department, National Research Centre, P.O. Box 12622, Dokki, Cairo, Egypt
| | - Asmaa M Fahim
- Green Chemistry Department, National Research Center, P.O. Box 12622, Dokki, Cairo, Egypt.
| | - Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
7
|
Elsayed GH, Dacrory S, Fahim AM. Anti-proliferative action, molecular investigation and computational studies of novel fused heterocyclic cellulosic compounds on human cancer cells. Int J Biol Macromol 2022; 222:3077-3099. [DOI: 10.1016/j.ijbiomac.2022.10.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
8
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
9
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
10
|
Ghabbour HA, Fahim AM, Abu El-Enin MA, Al-Rashood ST, Abdel-Aziz HA. Crystal structure, Hirshfeld surface analysis and computational study of three 2-(4-arylthiazol-2-yl)isoindoline-1,3-dione derivatives. MOLECULAR CRYSTALS AND LIQUID CRYSTALS 2022; 742:40-55. [DOI: 10.1080/15421406.2022.2045794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Asmaa M. Fahim
- Green Chemistry Department, National Research Center, Dokki, Cairo, Egypt
| | - Mohammed A. Abu El-Enin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Faculty of Pharmacy, National University of Science and Technology, Nasiriya, Iraq
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Synthesis, characterization, antibacterial activities, molecular docking, and computational investigation of novel imine-linked covalent organic framework. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Aboelnaga A, Mansour E, Fahim AM, Elsayed GH. Synthesis, anti-proliferative activity, gene expression, docking and DFT investigation of novel pyrazol-1-yl-thiazol-4(5H)-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Synthesis of novel 1,2,3-triazole based acridine and benzothiazole scaffold N-glycosides with anti-proliferative activity, docking studies, and comparative computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Fahim AM, Magar HS, Ayoub MA. Synthesis, characterization, thermal Studies, electrochemical behavior, antimicrobial, docking studies, and computational simulation of triazole‐thiol metal complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Asmaa M. Fahim
- Department of Green chemistry National Research Center, Dokki Cairo Egypt
| | - Hend S. Magar
- App. Org. Chemistry Department, National Research Centre, Dokki Cairo Egypt
| | - Manara A. Ayoub
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain‐Shams University Cairo Egypt
| |
Collapse
|
15
|
Fahim AM, Magar HS, Mahmoud NH. Synthesis, anti‐proliferative activities, docking studies, and DFT calculations of novel isonicotinic mixed complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa M. Fahim
- Green chemistry Department NRC (National Research Center), Dokki Cairo Egypt
| | - Hend S. Magar
- App. Org. Chemical Department, Chemical Industries Research Division, NRC (National Research Centre) Cairo Egypt
| | - Nelly H. Mahmoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain‐Shams University Cairo Egypt
| |
Collapse
|
16
|
Fahim AM, Abouzeid RE, Kiey SAA, Dacrory S. Development of semiconductive foams based on cellulose- benzenesulfonate/CuFe2O4- nanoparticles and theoretical studies with DFT/ B3PW91/LANDZ2 basis set. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Synthesis of Cu-Porphyrazines by Annulated Diazepine Rings with Electrochemical, Conductance Activities and Computational Studies. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|