1
|
Kanchrana M, Gamidi RK, Kumari J, Sriram D, Basavoju S. Design, synthesis, anti-mycobacterial activity, molecular docking and ADME analysis of spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition reaction under ultrasound irradiation. Mol Divers 2024; 28:3979-3991. [PMID: 38261121 DOI: 10.1007/s11030-023-10790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.
Collapse
Affiliation(s)
- Madhu Kanchrana
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India.
| |
Collapse
|
2
|
Kumar A, Lal K, Murtaza M, Jaglan S, Rohila Y, Singh P, Singh MB, Kumari K. Antimicrobial, antibiofilm, docking, DFT and molecular dynamics studies on click-derived isatin-thiosemicarbazone-1,2,3-triazoles. J Biomol Struct Dyn 2023; 42:9919-9938. [PMID: 37695672 DOI: 10.1080/07391102.2023.2253912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
In an effort to develop new antimicrobial and antibiofilm agents, we have designed and synthesized a novel class of isatin-thiosemicarbazone-1,2,3-triazoles through the CuAAC approach. All the synthesized hybrids were characterized by several spectral techniques such as FTIR, 1H NMR, 13C NMR, 2D NMR and HRMS. All the derivatives were evaluated for their antimicrobial and antibiofilm efficacy towards various microbial species. Triazole hybrid 8d exhibited the highest efficacy towards E. coli (MIC = 0.0067 µmol/mL) and S. aureus (MIC = 0.0067 µmol/mL), whereas, compounds 8b, 8c, 8d, 8e, 9a and terminal alkyne (10) significantly inhibited biofilm formation against S. aureus, B. subtilis and E. coli. To find out the structure-activity relationship and binding interactions of synthesized hybrids with enzymes 1KZN and 5TZ1, molecular docking for all the synthesized hybrids was carried out. DFT calculations for all hybrids and the molecular dynamics studies for compounds 9e and 9f were also performed to support the biological behavior of these hybrids.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Yajat Rohila
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
3
|
KAYA B. An Iron(III)-S-methylthiosemicarbazone Complex: Synthesis, Spectral Characterization, and Antioxidant Potency Measured by CUPRAC and DPPH Methods. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1058398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An iron(III) complex, [Fe(L1)Cl].H2O, was synthesized by template condensation reaction of 1,1,1-Trifluoroacetylacetone-S-methylthiosemicarbazone hydrogen iodide (L) and 2,3-dihydroxybenzaldehyde in the presence of iron(III) ions. The complex was characterized by IR, ESI MS and X-ray diffraction techniques. Free radical scavenging (FRS) ability and antioxidant capacity of the S-methylthiosemicarbazone and the iron(III) complex were evaluated through DPPH and CUPRAC methods, respectively. The complex exerted better than the S-methylthiosemicarbazone in both TEAC and FRS% values. In addition, iron(III) complex was found to be 3.1 times more antioxidant than the reference ascorbic acid according to the CUPRAC method.
Collapse
Affiliation(s)
- Büşra KAYA
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, MÜHENDİSLİK FAKÜLTESİ
| |
Collapse
|
4
|
Acharya PT, Bhavsar ZA, Jethava DJ, Rajani DP, Pithawala E, Patel HD. Synthesis, characterization, biological evaluation and computational study of benzimidazole hybrid thiosemicarbazide derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prachi T. Acharya
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Zeel A. Bhavsar
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Divya J. Jethava
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center Surat Gujarat India
| | - Edwin Pithawala
- Department of Microbiology and Biotechnology, Khyati Institute of Science, Palodia Ahmedabad Gujarat India
| | | |
Collapse
|
5
|
Kalındemirtaş FD, Kaya B, Sert E, Şahin O, Kuruca SE, Ülküseven B. New oxovanadium(IV) complexes overcame drug resistance and increased in vitro cytotoxicity by an apoptotic pathway in breast cancer cells. Chem Biol Interact 2022; 363:109997. [PMID: 35654126 DOI: 10.1016/j.cbi.2022.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
In order to examine the anticancer potential of oxovanadium(IV) complexes with thiosemicarbazone, two new complexes were prepared starting from 2-thenoyltrifluoroacetone-S-methylthiosemicarbazone. The complexes with tetradentate thiosemicarbazone ligand were characterized by elemental analysis, IR, ESI MS, and single-crystal X-ray diffraction analysis. Cytotoxicity on breast cancer cells, MDA-MB-231 and MCF-7, was determined by MTT assay. Cisplatin was positive control and the results were compared with those of the normal cells, HUVEC and 3T3. The complexes exhibited greater activity on cancer cells than cisplatin, but they were cytotoxic at several times higher concentrations in the healthy cells. In our study, the presence of thiophene and fluoro groups in the oxovanadium(IV) complexes with thiosemicarbazone increased greatly the cytotoxic activity of the complexes on breast cancer cells. Moreover, the complexes induced apoptosis-mediated cell death and also reduced the expression of MDR-1 or P-glycoprotein and ABCG2. As a result, the findings indicated that the complexes have selective cytotoxicity on breast cancer cells and can overcome multidrug resistance. These properties of the complexes make it possible to be a potential anticancer drug candidate for breast cancer treatment.
Collapse
Affiliation(s)
| | - Büşra Kaya
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
| | - Esra Sert
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390, Çapa, Istanbul, Turkey
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000, Sinop, Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, 34390, Çapa, Istanbul, Turkey
| | - Bahri Ülküseven
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
| |
Collapse
|
6
|
Lizarme-Salas Y, Yu TT, de Bruin-Dickason C, Kumar N, Hunter L. Fluorinated quorum sensing inhibitors: enhancement of potency through conformational control. Org Biomol Chem 2021; 19:9629-9636. [PMID: 34709279 DOI: 10.1039/d1ob01649k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial quorum sensing (QS) system is a target for non-lethal antibacterial agents that do not encourage the development of resistance. QS inhibitors commonly contain a polar "head" moiety and a lipidic "tail" moiety. In this work, we synthesised novel QS inhibitor candidates in which the lipidic "tail" is decorated with stereospecifically positioned fluorine atoms. The presence of fluorine is shown to bias the molecules into distinctive conformations that are pre-organised for binding to the QS receptor. This translates into significant increases in QS inhibitory potency.
Collapse
Affiliation(s)
- Yuvixza Lizarme-Salas
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| | - Tsz Tin Yu
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| | | | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia.
| |
Collapse
|