1
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M, Narmani A, Farhood B. Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review. Arch Pharm (Weinheim) 2025; 358:e2400903. [PMID: 40091562 DOI: 10.1002/ardp.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Nowadays, diseases have a high rate of incidence and mortality worldwide. On the other side, the drawbacks of conventional modalities in the suppression of diseases have encountered serious problematic issues for the health of human beings. For instance, although various approaches have been applied for the treatment of cancer, it has an ever-increasing rate of incidence and mortality throughout the globe. Thus, there is a fundamental requirement for the development of breakthrough technologies in the inhibition of diseases. Hyaluronic acid (HA) is one of the most practical biopolymers in the suppression of diseases. HA has lots of potential physicochemical (like rheological, structural, molecular weight, and ionization, etc.) and biomedical properties (bioavailability, biocompatibility, CD44 targeting and signaling pathways, components of biological organs, mucoadhesion, immunomodulation, etc.), which made it a potential candidate for the development of breakthrough tools in pharmaceutical and biomedical sciences. The ease of surface modification (carboxylation, amidation, hydroxylation, and esterification), high bioavailability and synthesis routes, and various administration routes are considered as other merits of HA-based vehicles. These mucopolysaccharide HA-based materials have been considerably developed for use in drug delivery systems (DDSs), cancer therapy, wound healing, antiaging, and tissue engineering. This review summarizes the advantages of HA-based DDS and scaffolds in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Asghar Narmani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Braccini S, Chen CB, Łucejko JJ, Barsotti F, Ferrario C, Chen GQ, Puppi D. Additive manufacturing of wet-spun chitosan/hyaluronic acid scaffolds for biomedical applications. Carbohydr Polym 2024; 329:121788. [PMID: 38286555 DOI: 10.1016/j.carbpol.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Additive manufacturing (AM) holds great potential for processing natural polymer hydrogels into 3D scaffolds exploitable for tissue engineering and in vitro tissue modelling. The aim of this research activity was to assess the suitability of computer-aided wet-spinning (CAWS) for AM of hyaluronic acid (HA)/chitosan (Cs) polyelectrolyte complex (PEC) hydrogels. A post-printing treatment based on HA chemical cross-linking via transesterification with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was investigated to enhance the structural stability of the developed scaffolds in physiological conditions. PEC formation and the esterification reaction were investigated by infrared spectroscopy, thermogravimetric analysis, evolved gas analysis-mass spectrometry, and differential scanning calorimetry measurements. In addition, variation of PMVEMA concentration in the cross-linking medium was demonstrated to strongly influence scaffold water uptake and its stability in phosphate buffer saline at 37 °C. The in vitro cytocompatibility of the developed hydrogels was demonstrated by employing the murine embryo fibroblast Balb/3T3 clone A31 cell line, highlighting that PMVEMA cross-linking improved scaffold cell colonization. The results achieved demonstrated that the developed hydrogels represent suitable 3D scaffolds for long term cell culture experiments.
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Chong-Bo Chen
- School of Life Sciences, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Francesca Barsotti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Ferrario
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Guo-Qiang Chen
- School of Life Sciences, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
3
|
Guo WL, Cao YJ, You SZ, Wu Q, Zhang F, Han JZ, Lv XC, Rao PF, Ai LZ, Ni L. Ganoderic acids-rich ethanol extract from Ganoderma lucidum protects against alcoholic liver injury and modulates intestinal microbiota in mice with excessive alcohol intake. Curr Res Food Sci 2022; 5:515-530. [PMID: 35281335 PMCID: PMC8913248 DOI: 10.1016/j.crfs.2022.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver injury is mainly caused by excessive alcohol consumption and has become a global public health problem threatening human health. It is well known that Ganoderma lucidum possesses various excellent beneficial effects on liver function and lipid metabolism. The purpose of this study was to evaluate the underlying protective effect and action mechanism of ganoderic acids-rich G. lucidum ethanol extract (GLE) on alcohol-induced liver injury in mice with excessive alcohol intake. Results showed that oral administration of GLE could obviously inhibit the abnormal increases of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and also significantly protect the liver against alcohol-induced excessive hepatic lipid accumulation and pathological changes. In addition, alcohol-induced oxidative stress in liver was significantly ameliorated by the dietary intervention of GLE through reducing the hepatic levels of maleic dialdehyde (MDA) and lactate dehydrogenase (LDH), and increasing the hepatic levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and alcohol dehydrogenase (ADH). Compared with the model group, GLE intervention significantly ameliorated the intestinal microbial disorder by elevating the relative abundance of Ruminiclostridium_9, Prevotellaceae_UCG-001, Oscillibacter, [Eubacterium]_xylanophilum_group, norank_f_Clostridiates_vadinBB60_group, GCA-900066225, Bilophila, Ruminococcaceae_UCG-009, norank_f_Desulfovibrionaceae and Hydrogenoanaerobacterium, but decreasing the proportion of Clostridium_sensu_stricto_1. Furthermore, liver metabolomic profiling suggested that GLE intervention had a significant regulatory effect on the composition of liver metabolites in mice with excessive alcohol intake, especially the levels of some biomarkers involved in primary bile acid biosynthesis, riboflavin metabolism, tryptophan metabolism, biosynthesis of unsaturated fatty acids, fructose and mannose metabolism, glycolysis/gluconeogenesis. Additionally, dietary supplementation with GLE significantly regulated the mRNA levels of key genes related to fatty acids metabolism, ethanol catabolism and inflammatory response in liver. Conclusively, these findings indicate that GLE has a potentially beneficial effect on alleviating alcohol-induced liver injury and may be developed as a promising functional food ingredient. Phytochemical analysis revealed that ethanol extract of Gaoderma lucidum (GLE) is rich in ganoderic acids. GLE ameliorated lipid metabolism, antioxidant function and inflammatory response in mice with excessive alcohol intake. Liver metabolomics based on UPLC-QTOF/MS was performed to reveal the underlying hepatoprotective effect of GLE. GLE intervention alleviated alcoholic liver injury partly through regulating the “gut-liver-metabolite”axis. Hepatic gene transcriptions related to lipid metabolism and inflammation were remarkablyinfluenced by GLE intervention.
Collapse
|