1
|
Kosar N, Ayub K, Al-Saadi AA, Imran M, Mahmood T. Optimization of nonlinear properties of C 6O 6Li 6-doped alkalides via group I/III doping for unprecedented charge transfer and advancements in optoelectronics. Phys Chem Chem Phys 2025; 27:2033-2045. [PMID: 39751906 DOI: 10.1039/d4cp03890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported C6O6Li6 (AM@C6O6Li6) complexes to enhance their NLO response. The AM-C6O6Li6 complexes retained their structural features following interaction with the Group-IIIA elements. Interaction energies as high as -109 kcal mol-1 demonstrated the high thermodynamic stability of these complexes. An exceptional charge transfer behavior was predicted in these complexes, where the electronic density of the Group-III metals shifted toward the alkali metals, making these complexes behave as alkalides. The π conjugation of C6O6Li6 was found to withdraw excess electrons from the Group IIIA metals in these alkalides, which were subsequently transferred to the Group IA metals. The energy gap of the frontier molecular orbitals (FMOs) in the AM-C6O6Li6 complexes was notably reduced upon alkalide formation. UV-visible analysis explicitly showed a bathochromic shift in the alkalides. The first hyperpolarizability (β0) was calculated to confirm the NLO properties of these alkalides. B-C6O6Li6-K exhibited the highest β0 value of 1.75 × 105 au. The vibrational frequency-dependent first and second hyperpolarizability values illustrated an increase in hyperpolarizability at a frequency of 532 nm. A higher n2 value of 8.39 × 10-12 cm2 W-1 was obtained for B-C6O6Li6-Na at 532 nm. These results highlight the promising NLO response of the designed alkalides and their potential applications in the field of optics.
Collapse
Affiliation(s)
- Naveen Kosar
- Department of Chemistry, University of Management and Technology (UMT), C-11, Johar Town Lahore, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Bahrain
| |
Collapse
|
2
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
3
|
Wu Q, Zheng J, Yu Y, Li Z, Li Y, Hu C, Zhou Y, Chen R. Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS. Molecules 2024; 29:3133. [PMID: 38999085 PMCID: PMC11242995 DOI: 10.3390/molecules29133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Vitex negundo has strong antioxidant activity, but its primary antioxidant components are not clear. In this study, the antioxidant components were screened by offline two-dimensional liquid chromatography coupled with electrochemical detection (2D-LC-ECD) and subsequently assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, radical scavenging capacity, and molecular docking. Various fractions were isolated from Vitex negundo leaves, and 39 antioxidant components were screened and identified. All of the fractions containing the antioxidant components exhibited certain antioxidant activity. Correlation analysis revealed a strong correlation between the response of LC-ECD and the in vitro antioxidant activity of the fractions. Molecular docking demonstrated that components with high response to LC-ECD exhibited robust interaction with antioxidant-related target proteins. The main antioxidant components of Vitex negundo leaves were isoorientin, chlorogenic acid, agnuside, cynaroside, and scutellarin. The 2D-LC-ECD combined with LC-MS/MS was rapid and effective in screening the antioxidant components in Vitex negundo leaves and could also provide technical support for the discovery of antioxidant components with different polarities and contents in other medicinal and edible plants.
Collapse
Affiliation(s)
- Qimei Wu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jinfen Zheng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yan Yu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhirong Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Ying Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chengfeng Hu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yaping Zhou
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Rongxiang Chen
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Kazachenko АS, Vasilyeva NY, Akman F, Fetisova OY, Berezhnaya YD, Karacharov AA, Issaoui N, Borovkova VS, Malyar YN, Ivanenko T. Sulfation of agarose with ammonium sulfamate: A combined experimental and theoretical study. J Mol Struct 2023; 1294:136471. [DOI: 10.1016/j.molstruc.2023.136471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Zhang JX, Zhang BD, Shi Y, Zhai YN, Ren JW, Cai L, Sun LY, Liu L. Penindolacid A, a new indole alkaloid from the marine-derived fungus Penicillium sp. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:554-559. [PMID: 37614032 DOI: 10.1002/mrc.5389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Jin-Xin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Dan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Nan Zhai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Yan Sun
- College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Kosar N, Wajid S, Ayub K, Gilani MA, Binti Zainal Arfan NH, Sheikh Abdul Hamid MH, Imran M, Sheikh NS, Mahmood T. Giant NLO response and deep ultraviolet transparency of dual (alkali/alkaline earth) metals doped C 6O 6Li 6 electrides. Heliyon 2023; 9:e18264. [PMID: 37533989 PMCID: PMC10391932 DOI: 10.1016/j.heliyon.2023.e18264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
The designing of new materials having outstanding nonlinear optical (NLO) response is much needed for use in latest optics. Herein, the geometric, electronic and NLO properties of alkali and alkaline earth metals doped C6O6Li6 (alk-C6O6Li6-alkearth, alkearth = Ca, Mg, Be and alk = K, Na, Li) electrides is studied via quantum chemical approach. The interaction energies (Eint) are examined to illustrate their thermodynamic stability. The strong interaction energy of -39.99 kcal mol-1 is observed for Ca-C6O6Li6-Li electride in comparison to others. Frontier molecular orbitals (FMOs) energy gap of considered complexes is changed due to the electronic density shifting between metals and C6O6Li6 surface, which notifies the semi conducting properties of these electrides. The FMOs isodensities and natural bond orbital (NBO) charge analysis are performed to justify charge transfer between dopants and complexant. UV-Visible study also confirmed the application of these electrides as deep ultra-violet laser devices. NLO response is studied through calculation of first hyperpolarizability (βo). The highest βo value of 1.68 × 105 au is calculated for Mg-C6O6Li6-K electride. NLO response is further rationalized by three- and two-level models approach.
Collapse
Affiliation(s)
- Naveen Kosar
- Department of Chemistry, University of Management and Technology (UMT), C-11, Johar Town Lahore, Pakistan
| | - Sunaina Wajid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nur Hazimah Binti Zainal Arfan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | | | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Nadeem S. Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Bahrain
| |
Collapse
|
7
|
Kosar N, Wajid S, Ayub K, Gilani MA, Mahmood T. First, second and third order NLO response of alkaline earth metals doped C6O6Li6 organometallic complexes. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Inversion Theory Leveling as a New Methodological Approach to Antioxidant Thermodynamics: A Case Study on Phenol. Antioxidants (Basel) 2023; 12:antiox12020282. [PMID: 36829841 PMCID: PMC9952401 DOI: 10.3390/antiox12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Antioxidants are various types of compounds that represent a link between biology and chemistry. With the development of theoretical and computational methods, antioxidants are now being studied theoretically. Here, a novel method is presented that aims to reduce the estimated wall times for DFT calculations that result in the same or higher degree of accuracy in the second derivatives over energy than is the case with the regular computational route (i.e., optimizing the reaction system at a lower model and then recalculating the energies at a higher level of theory) by applying the inversion of theory level to the universal chemical scavenger model, i.e., phenol. The resulting accuracy and wall time obtained with such a methodological setup strongly suggest that this methodology could be generally applied to antioxidant thermodynamics for some costly DFT methods with relative absolute deviation.
Collapse
|
9
|
Uludag N, Üstün E, Serdaroğlu G. Strychnos alkaloids: total synthesis, characterization, DFT investigations, and molecular docking with AChE, BuChE, and HSA. Heliyon 2022; 8:e11990. [DOI: 10.1016/j.heliyon.2022.e11990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
|
10
|
Üstün E, Şakar D, Çol Ayvaz M, Sönmez Çelebi M, Ertürk Ö. CO-Releasing, Antioxidant, Antibacterial, Zeta Potential, Theoretical, and Electrochemical Analysis of [Mn(CO)3(bpy)L]OTf Type Complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Uludag N, Serdaroğlu G, Sugumar P, Rajkumar P, Colak N, Ercag E. Synthesis of thiophene derivatives: Substituent effect, antioxidant activity, cyclic voltammetry, molecular docking, DFT, and TD-DFT calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Cyanomethylation of 2,3,4,9-tetrahydro-1H-carbazol-1-one based on using two different reagents: Antioxidant activity and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Uludag N, Duran E. An Improved Approach to the Synthesis of (±)-Noruleine. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2021.2022923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nesimi Uludag
- Department of Chemistry, Organic Division, Faculty of Sciences and Arts, Namık Kemal University, Tekirdag, Turkey
| | - Ebru Duran
- Department of Chemistry, Organic Division, Faculty of Sciences and Arts, Namık Kemal University, Tekirdag, Turkey
| |
Collapse
|
14
|
An efficient studies on C-2 cyanomethylation of the indole synthesis: The electronic and spectroscopic characterization (FT-IR, NMR, UV-Vis), antioxidant activity, and theoretical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kaya Y, Erçağ A, Serdaroğlu G, Kaya S, Grillo IB, Rocha GB. Synthesis, spectroscopic characterization, DFT calculations, and molecular docking studies of new unsymmetric bishydrazone derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|