1
|
Masood A, Khan MA, Bhat MA, Awan B, Hanif R, Raza A, Khaliq S, Ahmed J, Ullah F. Exploring biological activities of novel Schiff bases derived from amlodipine and in silico molecular modeling studies. Future Med Chem 2024; 16:2383-2394. [PMID: 39303045 PMCID: PMC11622768 DOI: 10.1080/17568919.2024.2401313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Aim: Calcium channel antagonists are of considerable interest in treating elevated blood pressure and its pathologies.Materials & methods: Schiff base derivatives of amlodipine were produced to check its urease inhibition potentials as well antibacterial and antioxidant activities. Structural illustration along with chemical characterization were achieved by spectral techniques (1H NMR, FTIR, 13C NMR) and docking studies also performed.Results & conclusion: 3g displayed remarkable anti-hypertensive activity compared with parent drug. 3b, 3f and 3g showed urease inhibition potentials. These compounds can aid as lead for further investigations since they exhibited comparable or superior interactions.
Collapse
Affiliation(s)
- Anum Masood
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College, London, SE1 9NH, UK
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh, P.O Box 11451, Saudi Arabia
| | - Breena Awan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
| | - Ramsha Hanif
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Punjab, Lahore, P.O Box 05422, Pakistan
| | - Asim Raza
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
| | - Saharish Khaliq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
| | - Javaid Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The islamia University of Bahawalpur, P.O Box 63100, Pakistan
| |
Collapse
|
2
|
Eissa KI, Kamel MM, Mohamed LW, Kassab AE. Development of new Alzheimer's disease drug candidates using donepezil as a key model. Arch Pharm (Weinheim) 2023; 356:e2200398. [PMID: 36149034 DOI: 10.1002/ardp.202200398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent geriatric diseases and a significant cause of high mortality. This crippling disorder is becoming more prevalent at an unprecedented rate, which has led to an increase in the financial cost of caring. It is a pathologically complicated, multifactorial disease characterized by β-amyloid precipitation, β-amyloid oligomer production, decrease in cholinergic function, and dysregulation of other neurotransmitter systems. Due to the pathogenic complexity of AD, multitarget drugs that can simultaneously alternate multiple biological targets may enhance the therapeutic efficacy. Donepezil (DNP) is the most potent approved drug for the treatment of AD. It has a remarkable effect on a number of AD-related processes, including cholinesterase activity, anti-Aβ aggregation, oxidative stress, and more. DNP resembles an excellent scaffold to be hybridized with other pharmacophoric moieties having biological activity against AD pathological factors. There have been significant attempts made to modify the structure of DNP to create new bioactive chemical entities with novel structural patterns. In this review, we highlight recent advances in the development of multiple-target DNP-hybridized models for the treatment of AD that can be used in the future in the rational design of new potential AD therapeutics. The design and development of new drug candidates for the treatment of AD using DNP as a molecular scaffold have also been reviewed and summarized.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Djafarou S, Amine Khodja I, Boulebd H. Computational design of new tacrine analogs: an in silico prediction of their cholinesterase inhibitory, antioxidant, and hepatotoxic activities. J Biomol Struct Dyn 2023; 41:91-105. [PMID: 34825629 DOI: 10.1080/07391102.2021.2004232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tacrine, the first drug approved for the treatment of Alzheimer's disease (AD), is a non-competitive cholinesterase inhibitor withdrawn due to its acute hepatotoxicity. However, new non-hepatotoxic forms of tacrine have been actively researched. Moreover, several recent reports have shown that oxidative stress is the cause of damage and plays a role in the pathogenesis of several neurodegenerative diseases including AD. The aim of the present study is the design of new easily synthesized tacrine analogs with less hepatotoxicity and potent antioxidant activity. In this context, a library of 34 novel tacrine analogs bearing an antioxidant fragment was designed and evaluated for its hepatotoxicity as well as anticholinesterase and antioxidant activities using computational methods. As a result, six new tacrine analogs have been proposed as potential inhibitors of cholinesterase with antioxidant activity and low or no hepatotoxicity. Furthermore, ADME calculations suggest that these compounds are promising oral drug candidates. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Selsabil Djafarou
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
4
|
Murtaza S, Kausar N, Arshad U, Ahmed S, Tatheer A, Najeeb J, Tawab A. Novel 2-aminobenzohydrazide derivatives, design, synthesis, anti-Alzheimer evaluation, SAR studies and molecular docking analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Ermiş E, Ermiş T, Şahiner A. Synthesis, characterization of (E)-3-((2‑hydroxy-5-(thiophen-2-yl)benzylidene)amino)benzonitrile and optimization of its energy by Fuzzy Logic Modelling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Burmaoglu S, Kazancioglu EA, Kazancioglu MZ, Sağlamtaş R, Yalcin G, Gulcin I, Algul O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kausar N, Murtaza S, Arshad MN, Zaib Saleem RS, Asiri AM, Kausar S, Altaf AA, Tatheer A, Elnaggar AY, El-Bahy SM. Design, synthesis, crystal structure, in vitro cytotoxicity evaluation, density functional theory calculations and docking studies of 2-(benzamido) benzohydrazide derivatives as potent AChE and BChE inhibitors. RSC Adv 2021; 12:154-167. [PMID: 35424495 PMCID: PMC8978638 DOI: 10.1039/d1ra07221h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022] Open
Abstract
A series of hydrazone derivatives of 2-(benzamido) benzohydrazide was designed, synthesized, and characterized utilizing FTIR, NMR and UV spectroscopic techniques along with mass spectrometry. Compound 10 was also characterized through X-ray crystallography. These synthesized compounds were assessed for their potential as anti-Alzheimer's agents by checking their AChE and BChE inhibition properties by in vitro analysis. The synthesized derivatives were also evaluated for their antioxidant potential along with cytotoxicity studies. The results clearly indicated that dual inhibition of both the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was achieved by most of the compounds (03-13), showing varying IC50values. Remarkably, compound 06 (IC50 = 0.09 ± 0.05 for AChE and 0.14 ± 0.05 for BChE) and compound 13 (IC50 = 0.11 ± 0.03 for AChE and 0.10 ± 0.06 for BChE) from the series showed IC50 values comparable to the standard donepezil (IC50 = 0.10 ± 0.02 for AChE and 0.14 ± 0.03 for BChE). Moreover, the derivative 11 also exhibited selective inhibition against BChE with IC50 = 0.12 ± 0.09. Meanwhile, compounds 04 and 10 exhibited good anti-oxidant activities, showing % scavenging of 95.06% and 82.55%, respectively. Cytotoxicity studies showed that the synthesized compounds showed cell viability greater than 80%; thus, these compounds can be safely used as drugs. DFT and molecular docking studies also supported the experimental findings.
Collapse
Affiliation(s)
- Naghmana Kausar
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Shahzad Murtaza
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | | | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Samia Kausar
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
- Catalysis Research Center, Department of Chemistry, Technical University of Munich Lichtenbergstrasse 4 85747 Garching Germany
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara Okara 56300 Pakistan
| | - Adina Tatheer
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Ashraf Y Elnaggar
- Department of Food Nutrition Science, College of Science, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
9
|
Kapoor A, Rajput JK. Staudinger k
etene–imine
[2+2] cycloaddition of novel azomethines to synthesize biologically active azetidinone derivatives and their in vitro antimicrobial studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Atul Kapoor
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar India
| | - Jaspreet Kaur Rajput
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar India
| |
Collapse
|
10
|
Kavalapure RS, Alegaon SG, Venkatasubramanian U, Priya AS, Ranade SD, Khanal P, Mishra S, Patil D, Salve PS, Jalalpure SS. Design, synthesis, and molecular docking study of some 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases as potential Eg5 inhibitory agents. Bioorg Chem 2021; 116:105381. [PMID: 34601297 DOI: 10.1016/j.bioorg.2021.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
In Search of new microtubule-targeting compounds and to identify a promising Eg5 inhibitory agents, a series of 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases molecules (6 a-r) were synthesized using appropriate synthetic method. The synthesized compounds were characterized by using FTIR, Proton NMR, Carbon NMR and mass spectral analysis. All eighteen compounds were evaluated for their Eg5 inhibitory activity. Among the evaluated compounds, only seven compounds are shown inhibitory activity. The results of Steady state ATPase reveled that compounds 6b, 6l and 6p exhibited promising inhibitory activity with IC50 Values of 2.720 ± 0.69, 2.676 ± 0.53 and 2.408 ± 0.46 respectively. Malachite Green Assay results reveled that 6q compound showed better inhibitory activity with IC50 Value of 0.095 ± 0.27. In vitro antioxidant capacity of the synthesized compounds was investigated. A molecular docking studies were performed to evaluate interaction in to binding site of kinesin spindle protein, these interaction influencing may support Eg5 inhibitory activity. The drug like parameters of the eighteen synthesized compounds were also computed using Qikprop software. In conclusion, some of 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff base compounds represent promising drug like agents for discovery of effective anticancer molecules.
Collapse
Affiliation(s)
- Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.
| | - U Venkatasubramanian
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613 401, India
| | - A Soundarya Priya
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613 401, India
| | - Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Pukar Khanal
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Sanjay Mishra
- KAHER's Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Dhanashree Patil
- KAHER's Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Preeti S Salve
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Sunil S Jalalpure
- KAHER's Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India; Department of Pharmacognosy, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| |
Collapse
|
11
|
Munir R, Javid N, Zia-ur-Rehman M, Zaheer M, Huma R, Roohi A, Athar MM. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy. Molecules 2021; 26:molecules26164908. [PMID: 34443493 PMCID: PMC8399016 DOI: 10.3390/molecules26164908] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
In this article, a synthesis of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides and their structural interpretation by NMR experiments is described in an attempt to explain the duplication of some peaks in their 1H- and 13C-NMR spectra. Twenty new 6-methyl-1H-pyrazolo[3,4-b]quinoline substituted N-acylhydrazones 6(a–t) were synthesized from 2-chloro-6-methylquinoline-3-carbaldehyde (1) in four steps. 2-Chloro-6-methylquinoline-3-carbaldehyde (1) afforded 6-methyl-1H-pyrazolo[3,4-b]quinoline (2), which upon N-alkylation yielded 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetate (3). The hydrazinolysis of 3 followed by the condensation of resulting 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazide (4) with aromatic aldehydes gave N-acylhydrazones 6(a–t). Structures of the synthesized compounds were established by readily available techniques such as FT-IR, NMR and mass spectral studies. The stereochemical behavior of 6(a–t) was studied in dimethyl sulfoxide-d6 solvent by means of 1H NMR and 13C NMR techniques at room temperature. NMR spectra revealed the presence of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides as a mixture of two conformers, i.e., E(C=N)(N-N) synperiplanar and E(C=N)(N-N)antiperiplanar at room temperature in DMSO-d6. The ratio of both conformers was also calculated and E(C=N) (N-N) syn-periplanar conformer was established to be in higher percentage in equilibrium with the E(C=N) (N-N)anti-periplanar form.
Collapse
Affiliation(s)
- Rubina Munir
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
- Correspondence: or (R.M.); (M.Z.R.)
| | - Noman Javid
- Department of Chemistry (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan;
| | - Muhammad Zia-ur-Rehman
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
- Correspondence: or (R.M.); (M.Z.R.)
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
| | - Rahila Huma
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | | |
Collapse
|