1
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
2
|
Sharma D, Dhobi M, Lather V, Pandita D. An insight into the therapeutic effects of isoliquiritigenin in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9503-9519. [PMID: 39007925 DOI: 10.1007/s00210-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer ranks as the most widespread malignant condition in women, emerging as a primary contributor to mortality. The primary challenges in cancer treatments involve undesirable side effects. Therefore, exploring natural compounds as additional therapy could provide valuable insights. Isoliquiritigenin (ILN), an isoflavonoid featuring a chalcone moiety primarily sourced from Glycyrrhiza species, has garnered increasing interest in breast cancer research. This review aims to provide a comprehensive understanding of ILN's mechanisms of action in breast cancer, drawing from a range of in vitro and in vivo studies. ILN primarily acts by inhibiting angiogenesis, aromatase, inflammation, and cell proliferation, and preventing invasion and metastasis. Mechanistically, it downregulates miR-374a, phosphoinositide-3-kinase-protein kinase B/Akt, maternal embryonic leucine zipper kinase, vascular endothelial growth factor, and estrogen receptor protein levels, and causes enhancement of Wnt inhibitory factor-1, and Unc-51-like kinase 1 expression to treat breast cancer. ILN emerges as a promising natural option, offering therapeutic advantages with minimal side effects. However, it is important to note that current research on ILN is primarily limited to preclinical models, underscoring the need for further investigation to validate its potential efficacy.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR) Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
- Centre for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
| |
Collapse
|
3
|
Yousefi Q, Nezamzadeh-Ejhieh A. A chitosan-based magnetic system for response surface methodology (RSM) optimization of the influencing variables in ciprofloxacin loading/releasing. Int J Biol Macromol 2024; 283:137717. [PMID: 39571847 DOI: 10.1016/j.ijbiomac.2024.137717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
We optimized the loading and release processes of Ciprofloxacin (CIP) on Fe3O4/Chitosan (FCS) magnetic nanoparticles (MNPs) for drug delivery applications. The Fe3O4 MNPs were synthesized via the coprecipitation method and subsequently coated with Chitosan to enhance their properties. Ciprofloxacin was used as a model drug. We characterized the structure, morphology, physicochemical, and magnetic properties of both the Fe3O4/CS MNPs and the CIP-loaded Fe3O4/CS MNPs using various techniques, including SEM, EDX, FTIR, XRD, VSM, TGA, and elemental mapping. In the spectrum of Fe3O4/CS/CIP, the appearance of absorption bands at 3437 cm-1 and 2908 cm-1 for -OH, and -NH2 functional groups of chitosan, the bands at 1378 cm-1 and 1066 cm-1 belong to its CH-OH and -C-O-C groups, and the bands at 1945 cm-1 and 1606 cm-1 of CIP carbonyl groups confirm modification of magnetite NPs by CS and loading CIP by the modified adsorbent. The average crystallite size was obtained about 20 nm based on the diffraction data. The modified adsorbent has a pHpzc of 6.1. The effects of different factors such as pH, time, temperature, and initial concentration on CIP's loading and release processes were studied using response surface methodology (RSM). Our findings indicated that the concentration of CIP was the most significant factor influencing the loading process, while time was the most crucial factor for the release process. The optimal conditions for loading were determined to be at pH 9 with a stirring time of 13 h, whereas the optimal conditions for release were at pH 2.7 with a stirring time of 9 h within a range of 1 to 9 h. One-factor-at-a-time studies indicated that a concentration of 20 ppm and an exposure time of 8 h had the most significant effects on loading and release, respectively.
Collapse
Affiliation(s)
- Qadir Yousefi
- Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
4
|
Pathania H, Chauhan P, Chaudhary V, Khosla A, Neetika, Kumar S, Gaurav, Sharma M. Engineering core-shell mesoporous silica and Fe 3O 4@Au nanosystems for targeted cancer therapeutics: a review. Biotechnol Genet Eng Rev 2024; 40:3653-3681. [PMID: 36444150 DOI: 10.1080/02648725.2022.2147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
The extensive utilization of nanoparticles in cancer therapies has inspired a new field of study called cancer nanomedicine. In contrast to traditional anticancer medications, nanomedicines offer a targeted strategy that eliminates side effects and has high efficacy. With its vast surface area, variable pore size, high pore volume, abundant surface chemistry and specific binding affinity, mesoporous silica nanoparticles (MPSNPs) are a potential candidate for cancer diagnosis and treatment. However, there are several bottlenecks associated with nanoparticles, including specific toxicity or affinity towards particular body fluid, which can cater by architecting core-shell nanosystems. The core-shell chemistries, synergistic effects, and interfacial heterojunctions in core-shell nanosystems enhance their stability, catalytic and physicochemical attributes, which possess high performance in cancer therapeutics. This review article summarizes research and development dedicated to engineering mesoporous core-shell nanosystems, especially silica nanoparticles and Fe3O4@Au nanoparticles, owing to their unique physicochemical characteristics. Moreover, it highlights state-of-the-art magnetic and optical attributes of Fe3O4@Au and MPSNP-based cancer therapy strategies. It details the designing of Fe3O4@Au and MPSN to bind with drugs, receptors, ligands, and destroy tumour cells and targeted drug delivery. This review serves as a fundamental comprehensive structure to guide future research towards prospects of core-shell nanosystems based on Fe3O4@Au and MPSNP for cancer theranostics.
Collapse
Affiliation(s)
- Himani Pathania
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Priyanka Chauhan
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Vishal Chaudhary
- Research Cell and Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, PR China
| | - Neetika
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Mamta Sharma
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Botany, Vivekananda Bhawan, Sardar Patel University, Mandi, India
| |
Collapse
|
5
|
Chan HY, Ramasamy TS, Chung FFL, Teow SY. Role of sirtuin 1 (SIRT1) in regulation of autophagy and nuclear factor-kappa Beta (NF-ĸβ) pathways in sorafenib-resistant hepatocellular carcinoma (HCC). Cell Biochem Biophys 2024; 82:959-968. [PMID: 38466472 DOI: 10.1007/s12013-024-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) remains a major global health problem with high incidence and mortality. Diagnosis of HCC at late stages and tumour heterogeneity in patients with different genetic profiles are known factors that complicate the disease treatment. HCC therapy becomes even more challenging in patients with drug resistance such as resistance to sorafenib, which is a common drug used in HCC patients. Sorafenib resistance can further aggravate HCC by regulating various oncogenic pathways such as autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling. Sirtuin 1 (SIRT1), is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylases that regulates various metabolic and oncogenic events such as cell survival, apoptosis, autophagy, tumourigenesis, metastasis and drug resistance in various cancers, but its role in HCC, particularly in sorafenib resistance is underexplored. In this study, we generated sorafenib-resistant HepG2 and Huh-7 liver cancer cell models to investigate the role of SIRT1 and its effect on autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling pathways. Western blot analysis showed increased SIRT1, altered autophagy pathway and activated NF-ĸβ signalling in sorafenib-resistant cells. SIRT1-silenced HCC cells demonstrated down-regulated autophagy in both parental and chemoresistant cells. This may occur through the deacetylation of key autophagy molecules such as FOXO3, beclin 1, ATGs and LC3 by SIRT1, highlighting the role of SIRT1 in autophagy induction. Silencing of SIRT1 also resulted in activated NF-ĸβ signalling. This is because SIRT1 failed to deacetylate p65 subunit of NF-κB, translocate the NF-κB from nucleus to cytoplasm, and suppress NF-κB activity due to the silencing. Hence, the NF-κB transcriptional activity was restored. These findings summarize the role of SIRT1 in autophagy/NF-ĸβ regulatory axis, with a similar trend observed in both parental and sorafenib-resistant cells. The present work promotes a better understanding of the role of SIRT1 in autophagy and NF-ĸβ signalling in HCC and sorafenib-resistant HCC. As some key proteins in these pathways are potential therapeutic targets, a better understanding of SIRT1/autophagy/NF-ĸβ axis could further improve the therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Hui-Yin Chan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, 47500 Subang Jaya, Bandar, Sunway, Selangor Darul Ehsan, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, 47500 Subang Jaya, Bandar, Sunway, Selangor Darul Ehsan, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, 325060, Zhejiang Provinve, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, 325060, Zhejiang Province, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morries Ave, Union, NJ, 07083, USA.
| |
Collapse
|
6
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Manzoor M, Sharma P, Murtaza M, Jaiswal AK, Jaglan S. Fabrication, characterization, and interventions of protein, polysaccharide and lipid-based nanoemulsions in food and nutraceutical delivery applications: A review. Int J Biol Macromol 2023; 241:124485. [PMID: 37076071 DOI: 10.1016/j.ijbiomac.2023.124485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The fabrication and application of nanoemulsions for incorporating and delivering diverse bioactive compounds, particularly hydrophobic substances, is becoming an increasing focus of research with the potential to improve the nutritional and health status of individuals. Constant advancements in nanotechnological approaches aid in the creation of nanoemulsions using diverse biopolymers such as proteins, peptides, polysaccharides, and lipids to improve the stability, bioactivity, and bioavailability of active hydrophilic and lipophilic compounds. This article provides a comprehensive overview of various techniques used to create and characterize nanoemulsions as well as theories for understanding their stability. The article also highlights the advancement of nanoemulsions in boosting the bioaccessibility of nutraceuticals to help advance their potential use in various food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India.
| | - Priyanshu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
8
|
Yusefi M, Soon MLK, Teow SY, Monchouguy EI, Neerooa BNHM, Izadiyan Z, Jahangirian H, Rafiee-Moghaddam R, Webster TJ, Shameli K. Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. Int J Biol Macromol 2022; 199:372-385. [PMID: 34998882 DOI: 10.1016/j.ijbiomac.2021.12.189] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Polysaccharide nanocrystals have great potential to be used as improved drug carriers due to their low cost, high biodegradability, and biocompatibility. This study reports the synthesis of cellulose nanocrystals (CNC) loaded with 5-fluorouracil (CNC/5FU) to evaluate their anticancer activity against colorectal cancer cells. X-ray and Fourier-transform infrared spectroscopy demonstrated that acid hydrolysis successfully degraded the amorphous cellulose to liberate the crystal regions. From transmission electron microscopy, CNC/5FU appeared as rod-like nanocrystals with an average length and width of 69.53 ± 1.14 nm and 8.13 ± 0.72 nm, respectively. The anticancer drug 5FU showed improved thermal stability after being loading onto CNC. From UV-vis spectroscopy data, the drug encapsulation efficiency in CNC/5FU was estimated to be 83.50 ± 1.52%. The drug release of CNC/5FU was higher at pH 7.4 compared to those at pH 4.2 and 1.2. From the cytotoxicity assays, CNC did not affect the viability of CCD112 colon normal cells. On the other hand, CNC/5FU exhibited anticancer effects against HCT116 and HT-29 colorectal cancer cells. The anticancer actions of CNC/5FU against HCT116 cells were then confirmed using an in vitro tumor-on-chip model and clonogenic assay. Mechanistic studies demonstrated that CNC/5FU killed the cancer cells by mainly inducing cell apoptosis and mitochondrial membrane damage. Overall, this study indicated that CNC/5FU could be a potential nanoformulation for improved drug delivery and colorectal cancer treatment.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Michiele Lee-Kiun Soon
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Elaine Irene Monchouguy
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | | | - Zahra Izadiyan
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, United States of America
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, United States of America
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, United States of America
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Szczęch M, Hinz A, Łopuszyńska N, Bzowska M, Węglarz WP, Szczepanowicz K. Polyaminoacid Based Core@shell Nanocarriers of 5-Fluorouracil: Synthesis, Properties and Theranostics Application. Int J Mol Sci 2021; 22:ijms222312762. [PMID: 34884566 PMCID: PMC8657732 DOI: 10.3390/ijms222312762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the most important health problems of our population, and one of the common anticancer treatments is chemotherapy. The disadvantages of chemotherapy are related to the drug’s toxic effects, which act on cancer cells and the healthy part of the body. The solution of the problem is drug encapsulation and drug targeting. The present study aimed to develop a novel method of preparing multifunctional 5-Fluorouracil (5-FU) nanocarriers and their in vitro characterization. 5-FU polyaminoacid-based core@shell nanocarriers were formed by encapsulation drug-loaded nanocores with polyaminoacids multilayer shell via layer-by-layer method. The size of prepared nanocarriers ranged between 80–200 nm. Biocompatibility of our nanocarriers as well as activity of the encapsulated drug were confirmed by MTT tests. Moreover, the ability to the real-time observation of developed nanocarriers and drug accumulation inside the target was confirmed by fluorine magnetic resonance imaging (19F-MRI).
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Alicja Hinz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.H.); (M.B.)
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (N.Ł.); (W.P.W.)
| | - Monika Bzowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.H.); (M.B.)
| | - Władysław P. Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (N.Ł.); (W.P.W.)
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
- Correspondence:
| |
Collapse
|