1
|
Qie L, Li Y, Li W, Ding Y, Li C, Sun Y, Wu H. Photo-electrochemical sensor based on BiOI/ZnIn 2S 4 heterojunction for detecting hydrogen peroxide and dopamine. Mikrochim Acta 2024; 191:590. [PMID: 39259417 DOI: 10.1007/s00604-024-06659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Photoelectrochemical (PEC) detection as a potential development strategy for hydrogen peroxide and dopamine sensors has received extensive attentions. Herein, BiOI/ZnIn2S4-X (X = n (BiOI)/n(ZnIn2S4)) heterojunction was synthesized using various molar ratios via a two-step method. A series of characterization techniques were employed to analyze the composition, surface structure, valence state, and optical properties of BiOI/ZnIn2S4-X. The results show that BiOI/ZnIn2S4-X perform significantly better than both BiOI and ZnIn2S4. Furthermore, BiOI/ZnIn2S4-9% exhibits superior visible light absorption capacity and photocurrent response among all of the BiOI/ZnIn2S4-X tested. Therefore, a PEC sensor was developed using BiOI/ZnIn2S4-9% for the detection of hydrogen peroxide and dopamine. The linear detection range for hydrogen peroxide spans from to 1 ~ 40,000 µM, with the LOD of 0.036 µM (S/N = 3). For dopamine, the corresponding values are 2 ~ 250 µM for the linear detection range, and 0.017 μM for the LOD, respectively. The sensor exhibits demonstrates excellent stability, reproducibility and resistance to interference, enabling the detection of real samples and thus holds promising application potential.
Collapse
Affiliation(s)
- Liangliang Qie
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, 432000, Hubei, P. R. China
| | - Ye Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, 215009, Jiangsu Province, P. R. China
| | - Weichang Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, 215009, Jiangsu Province, P. R. China
| | - Yu Ding
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, 432000, Hubei, P. R. China
- Nuode New Energy Materials Research Institute, Nuode New Materials Co., Ltd, Shenzhen, 518000, P. R. China
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, 215009, Jiangsu Province, P. R. China
| | - Yan Sun
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, 215009, Jiangsu Province, P. R. China
| | - Huimin Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, P. R. China.
| |
Collapse
|
2
|
Shao Z, Cheng J, Zhang Y, Peng Y, Shi L, Zhong M. Comprehension of the Synergistic Effect between m&t-BiVO 4/TiO 2-NTAs Nano-Heterostructures and Oxygen Vacancy for Elevated Charge Transfer and Enhanced Photoelectrochemical Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4042. [PMID: 36432328 PMCID: PMC9692637 DOI: 10.3390/nano12224042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Through the utilization of a facile procedure combined with anodization and hydrothermal synthesis, highly ordered alignment TiO2 nanotube arrays (TiO2-NTAs) were decorated with BiVO4 with distinctive crystallization phases of monoclinic scheelite (m-BiVO4) and tetragonal zircon (t-BiVO4), favorably constructing different molar ratios and concentrations of oxygen vacancies (Vo) for m&t-BiVO4/TiO2-NTAs heterostructured nanohybrids. Simultaneously, the m&t-BiVO4/TiO2-NTAs nanocomposites significantly promoted photoelectrochemical (PEC) activity, tested under UV-visible light irradiation, through photocurrent density testing and electrochemical impedance spectra, which were derived from the positive synergistic effect between nanohetero-interfaces and Vo defects induced energetic charge transfer (CT). In addition, a proposed self-consistent interfacial CT mechanism and a convincing quantitative dynamic process (i.e., rate constant of CT) for m&t-BiVO4/TiO2-NTAs nanoheterojunctions are supported by time-resolved photoluminescence and nanosecond time-resolved transient photoluminescence spectra, respectively. Based on the scheme, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids exhibited a photodegradation rate of 97% toward degradation of methyl orange irradiated by UV-visible light, 1.14- and 1.04-fold that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20, respectively. Furthermore, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids showed excellent PEC biosensing performance with a detection limit of 2.6 μM and a sensitivity of 960 mA cm-2 M-1 for the detection of glutathione. Additionally, the gas-sensing performance of m&t-BiVO4/TiO2-NTAs-10 is distinctly superior to that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20 in terms of sensitivity and response speed.
Collapse
Affiliation(s)
- Zhufeng Shao
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Jianyong Cheng
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Yonglong Zhang
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Yajing Peng
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Libin Shi
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Min Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, China
| |
Collapse
|