Fattahi M, Niazi Z, Esmaeili F, Mohammadi AA, Shams M, Nguyen Le B. Boosting the adsorptive and photocatalytic performance of MIL-101(Fe) against methylene blue dye through a thermal post-synthesis modification.
Sci Rep 2023;
13:14502. [PMID:
37666958 PMCID:
PMC10477185 DOI:
10.1038/s41598-023-41451-4]
[Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Photocatalytic degradation under ultra-low powered light is a viable advanced oxidation process technique against extensive emerging contaminants. As a new and remarkable class of nanoporous materials, metal-organic frameworks (MOFs), attract interest for the supreme adsorptive and photocatalytic functionalities. An outstanding MOF, MIL-101(Fe) chosen as a photocatalyst template for the synthesis of α-Fe2O3 by a simple thermal modification to improve the structural properties toward methylene blue (MB) eradication. Octahedron-like α-Fe2O3 photocatalyst (Modified MIL-101(Fe), M-MIL-101(Fe)) was superior in dispersion and separation properties in aqueous medium. Moreover, the adsorptive and catalytic performance was increased for modified form by ~ 7.3% and ~ 17.1% compared to pristine MIL-101(Fe), respectively. Synergistic improvement of MB removal achieved by simultaneous adsorption/degradation under 5-W LED irradiation. Parametric study indicated an 18.1% and 44.5% improvement in MB removal was observed by increasing pH from 4 to 10, and M-MIL-101(Fe) dose from 0.2 to 1 g L-1, respectively. MB removal followed the pseudo-second-order kinetics model and the process efficiency dropped by 38% as MB concentration increased from 5 to 20 mg L-1. Radical trapping tests revealed the significant role of [Formula: see text] and electron radicals as the major participants in dye degradation. A significant loss in the efficiency of M-MIL-101(Fe) was observed in the reusability tests that is good to study further. In conclusion, a simple thermal post-synthesis modification on MIL-101(Fe) improved its structural, catalytic, and adsorptive properties against MB.
Collapse