1
|
Johnson D, Dixit M, Kirubakaran S. Biochemical and Structural Studies of Protein Tyrosine Phosphatase PTP-PEST (PTPN12) in Search of Small Molecule Inhibitors. Chem Biol Drug Des 2025; 105:e70058. [PMID: 39895370 DOI: 10.1111/cbdd.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PTP-PEST (also known as PTPN12) regulates cellular signaling and transduction pathways by dephosphorylating its substrate. PTP-PEST is considered an important drug target owing to its involvement in cancer progression and myocardial injury. Till now only a few inhibitors are currently being studied in the inhibition of PTP-PEST, majorly belonging to the class of metal-based drugs. In this study, we aimed to investigate small molecules that could potentially inhibit PTP-PEST for further development of PTP-PEST inhibitors. As an approach, we used an in silico molecular docking technique to screen an in-house synthesized molecular library. Further, we validated the docking results by in vitro inhibition screening of the best molecules using the purified catalytic domain of human PTP-PEST, which was over-expressed in E.coli. We identified a myo-inositol based derivative, J1-65, which binds to PTP-PEST and results in the competitive inhibition of the protein. Further, we confirmed this protein-ligand binding using binding affinity studies based on protein thermal shift assay and in silico molecular dynamic simulations. Our efforts to discover a novel scaffold for inhibiting hPTP-PEST mark a crucial stride in laying the groundwork for the future development of selective PTP-PEST inhibitors.
Collapse
Affiliation(s)
- Delna Johnson
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Madhulika Dixit
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Priya B, Chhabria D, Mahesh Dhongdi J, Kirubakaran S. A novel approach to investigate the combinatorial effects of TLK1 (Tousled-Like Kinase1) inhibitors with Temozolomide for glioblastoma therapy. Bioorg Chem 2024; 151:107643. [PMID: 39029318 DOI: 10.1016/j.bioorg.2024.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive, incurable brain tumor with poor prognosis and limited treatment options. Temozolomide (TMZ) is the standard chemotherapeutic treatment for GBM, but its efficacy has drawn strong criticism from clinicians due to short survival gains and frequent relapses. One critical limitation of TMZ therapy is the hyperactivation of DNA repair pathways, which over time neutralizes the cytotoxic effects of TMZ, thus highlighting the urgent need for new treatment approaches. Addressing this, our study explores the therapeutic potential of in-house-designed phenothiazine-based Tousled-like kinase-1 (TLK1) inhibitors for GBM treatment. TLK1, overexpressed in GBM, plays a role in DNA repair. Phenothiazines are known to cross the blood-brain barrier (BBB). Among all molecules, J54 was identified as a potential lead molecule with improved cytotoxicity. In the context of O6-methylguanine-DNA methyltransferase (MGMT)-deficient GBM cells, the combined administration of phenothiazines and TMZ exhibited a collective reduction in clonogenic growth, coupled with anti-migratory and anti-invasion effects. Conversely, in MGMT-proficient cells, phenothiazine monotherapy alone showed reduced clonogenic growth, along with anti-migratory and anti-invasion effects. Notably, a synergistic increase in γH2AX levels and concurrent attenuation of DNA repair upon combinatorial exposure to TMZ and J54 were observed, implying increased cytotoxicity due to sustained DNA strand breaks. Overall, this study provides new insights into TLK1 inhibition for GBM therapy. Collectively, these findings indicate that TLK1 is one of the upregulated kinases in GBM and phenothiazine-based TLK1 inhibitors could be a promising treatment option for GBM patients.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Dimple Chhabria
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Janhvi Mahesh Dhongdi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India.
| |
Collapse
|
3
|
Johnson D, Hussain J, Bhoir S, Chandrasekaran V, Sahrawat P, Hans T, Khalil MI, De Benedetti A, Thiruvenkatam V, Kirubakaran S. Synthesis, kinetics and cellular studies of new phenothiazine analogs as potent human-TLK inhibitors. Org Biomol Chem 2023; 21:1980-1991. [PMID: 36785915 DOI: 10.1039/d2ob02191a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alterations in the expression patterns of protein kinases often implicate human cancer initiation and progression. Human tousled-like kinases (TLKs), both TLK1/1B and TLK2, are evolutionary kinases found in cell signaling pathways and are involved in DNA repair, replication, and chromosomal integrity. Several reports have demonstrated the numerous roles of TLK1B in the development and progression of cancer via its interactions with different partners, and this direct association has made them viable molecular targets for cancer therapy. Previous studies have shown phenothiazines to be potent TLK1B inhibitors. Herein, we report the design and synthesis of a class of phenothiazine molecules and their biological inhibitory effect on hTLK1B/KD through in vitro kinase assays, cellular assays, and in silico studies. We identified a few inhibitors with better inhibition and physio-chemical properties than the reported TLK1B inhibitors using a recombinant human tousled-like kinase 1B-kinase domain (hTLK1B-KD). Very interestingly, inhibitory activity with LNCap cells was found to be on the sub-nanomolar level. Our attempts to study the newly designed phenothiazine analogs, as well as generate a stable catalytically active hTLK1B-KD in high yield, represent a fundamental step towards the structure-based design of future TLK-specific inhibitors.
Collapse
Affiliation(s)
- Delna Johnson
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Javeena Hussain
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Siddhant Bhoir
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Vaishali Chandrasekaran
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Parul Sahrawat
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Tanya Hans
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Sivapriya Kirubakaran
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Komori T, Tsurumaki E, Toyota S. Synthesis, Structures, and Complexation with Phenolic Guests of Acridone-Incorporated Arylene-Ethynylene Macrocyclic Compounds. Chem Asian J 2023; 18:e202201003. [PMID: 36380477 PMCID: PMC10107286 DOI: 10.1002/asia.202201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Acridone units were incorporated into the arylene-ethynylene structure as polar arene units. Cyclic trimers consisting of three acridone-2,7-diyl units and three 1,3-phenylene units were synthesized by Sonogashira couplings via stepwise or direct route. X-ray analysis revealed that the trimer had a nearly planar macrocyclic framework with a cavity surrounded by three carbonyl groups. In contrast, the corresponding tetramer had a nonplanar macrocyclic framework. 1 H NMR measurements showed that the trimer formed a 1 : 1 complex as a macrocyclic host with dihydric phenol guests, and the association constants were determined to be ca. 1.0×103 L mol-1 for hydroquinone or resorcinol guests in CDCl3 at 298 K. The calculated structures of these complexes by the DFT method supported the presence of two sets of OH⋅⋅⋅O=C hydrogen bonds between the host and guest molecules. The spectroscopic data of the cyclic trimers and tetramers are compared with those of reference acridone compounds.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
| |
Collapse
|
5
|
Komori T, Tsurumaki E, Toyota S. Iterative synthesis, structures, and properties of acyclic and cyclic acridone oligomers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Shinji Toyota
- Tokyo Institute of Technology Department of Chemistry 2-12-1-E1-4 OokayamaMeguro-ku 152-8551 Tokyo JAPAN
| |
Collapse
|