1
|
Zhou L, Zhang M, Zheng Q, Song Y, Yan Z, Wang H, Xiong Y, Chen Y, Cai Z, Yuan J. Exploring the Mechanism of Kai-Xin-San to Improve Cognitive Deficits in AD Rats Induced by D-Gal and Aβ 25-35 Based on Multi-Omics and Network Analysis. Biomed Chromatogr 2025; 39:e70047. [PMID: 40033867 DOI: 10.1002/bmc.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease for which there are no effective drugs. Kai-Xin-San (KXS), with definite curative effects, is widely used for the prevention and treatment of AD in China. But its mechanism is not yet fully understood. Based on our established rat model and previous pharmacodynamics study, Multi-omics (metabolomics, proteomics) and network analysis were integrated to explore the holistic mechanism of anti-AD effects of KXS. The key pathways were validated with western blot and ELISA methods. Morris water maze and Nissl staining showed that KXS could ameliorate cognitive deficits and pathological morphology of the hippocampus in AD rats. A total of nine metabolites were identified, which were related to pyrimidine metabolism, riboflavin metabolism, tyrosine metabolism, tryptophan metabolism, and glycerophospholipid metabolism. Proteomics results indicated that the improvement of cognitive deficits by KXS was closely related to the regulation of oxidative phosphorylation in mitochondria. Western blotting results showed that KXS significantly inhibited the expression of Mt-nd2 and Ndufb6 in AD rats. Integrated analysis indicated that the anti-AD targets of KXS were interrelated and KXS could exert its anti-AD effect by reducing oxidative stress, neurotoxicity, and inflammation.
Collapse
Affiliation(s)
- Lifen Zhou
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Nanchang Key Laboratory for Quality and Safety Risk Assessment of Health Food and Its Contact Materials, Nanchang Inspection and Testing Center, Nanchang, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Laboratory Animal Science and Technology Development Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhihong Yan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huijuan Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yongchang Xiong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhinan Cai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Patowary P, Shakya A, Ghosh SK, Jamir L, Sahariah BJ, Gogoi N, Singh UP, Bhat HR. In Silico Study, Synthesis, and In Vitro Evaluation of Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Novel N-Thiazole Substituted Acetamide Coumarin Derivatives. Chem Biodivers 2025:e202401524. [PMID: 39903847 DOI: 10.1002/cbdv.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
In this study, a structurally directed pharmacophore hybridization technique is used to combine the two essential structural scaffolds coumarin and thiazoles in search of a new class of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor for Alzheimer's disease (AD). A library of 120 compounds was designed in two series 5a(1-15), 5b(16-30), 5c(31-45), 5d(46-60), and 6a(61-75), 6b(76-90), 6c(91-105), 6d(106-120) using various substituted phenol, β-ketoesters, and thiazole derivatives. Eleven compounds were identified as potential hybrids using molecular property filter analysis and molecular docking studies, and they comprise N-substituted thiazole coumarin derivatives. The docking results indicated that compounds 5b16 and 5c35 exhibited strong binding interactions with GLY116, GLY117, TYR332, and HIS438 (ranging from -27.42 to -24.18 kcal/mol) and GLY119, ASP72, and PHE288 (ranging from -32.21 to -25.92 kcal/mol) when tested against AChE (1EVE) and BuChE (1P0I) inhibitors. These compounds were synthesized via conventional methods and characterized by different spectroscopic methods. In vitro anti-cholinesterase activity results indicated that two compounds, for example, 5b16 and 5c35 showed potent to moderate activity against AChE and BuChE with IC50 (2.00 ± 0.09-29.63 ± 0.48) µM and (34.93 ± 0.62-17.92 ± 0.42) µM, respectively. Our study demonstrated the development of a novel class of hybrid coumarin thiazole derivatives as AChE and BuChE inhibitors, and these compounds could be utilized against ADs.
Collapse
Affiliation(s)
- Pooja Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Institute of Pharmaceutical Science, NETES, Mirza, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Lipoksangla Jamir
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Udaya Pratap Singh
- Department of Pharmaceutical Sciences, Drug Design and Discovery Laboratory, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
3
|
Orioli R, Belluti F, Gobbi S, Rampa A, Bisi A. Naturally Inspired Coumarin Derivatives in Alzheimer's Disease Drug Discovery: Latest Advances and Current Challenges. Molecules 2024; 29:3514. [PMID: 39124919 PMCID: PMC11313984 DOI: 10.3390/molecules29153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The main feature of neurodegenerative diseases, including Alzheimer's disease, is the network of complex and not fully recognized neuronal pathways and targets involved in their onset and progression. The therapeutic treatment, at present mainly symptomatic, could benefit from a polypharmacological approach based on the development of a single molecular entity designed to simultaneously modulate different validated biological targets. This strategy is principally based on molecular hybridization, obtained by linking or merging different chemical moieties acting with synergistic and/or complementary mechanisms. The coumarin core, widely found in nature, endowed with a recognized broad spectrum of pharmacological activities, large synthetic accessibility and favourable pharmacokinetic properties, appears as a valuable, privileged scaffold to be properly modified in order to obtain compounds able to engage different selected targets. The scientific literature has long been interested in the multifaceted profiles of coumarin derivatives, and in this review, a survey of the most important results of the last four years, on both natural and synthetic coumarin-based compounds, regarding the development of anti-Alzheimer's compounds is reported.
Collapse
Affiliation(s)
| | | | | | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy; (R.O.); (F.B.); (S.G.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy; (R.O.); (F.B.); (S.G.)
| |
Collapse
|
4
|
Bhatta A, Upadhyaya J, Chamlagai D, Dkhar L, Phanrang PT, Rao Kollipara M, Mitra S. Exploring the impact of novel thiazole-pyrazole fused benzo-coumarin derivatives on human serum albumin: Synthesis, photophysical properties, anti-cholinergic activity, and interaction studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123669. [PMID: 38006865 DOI: 10.1016/j.saa.2023.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Derivatives of thiazole-pyrazole fused benzo-coumarin compounds were successfully synthesized and characterized, followed by a comprehensive spectroscopic investigation on various photophysical properties in different media. The multipronged approach using steady state and time resolved fluorescence spectroscopy pointed out the impact of substitution in the estimated spectroscopic and other physicochemical properties of the systems. Further, the evaluation of anti-acetylcholinesterase (anti-AChE) activity yielded significant insight into the therapeutic potential of the synthesized coumarinyl compounds for the treatment of Alzheimer's disease (AD). The findings revealed a non-competitive mode of inhibition mechanism, with an estimated IC50 value of 67.72 ± 2.00 nM observed for one of the investigated systems as AChE inhibitor. Notably, this value is even lower than that of an FDA-approved AD drug Donepezil (DON), indicating the enhanced potency of the coumarin derivatives in inhibiting AChE. Interestingly, significant diminution in inhibition was observed in presence of human serum albumin (HSA) as evidenced by the relative increase in IC50 value by 8 ∼ 39 % in different cases, which emphasized the role of albumin proteins to control therapeutic efficacies of potential medications. In-depth spectroscopic and in-silico analysis quantified the nature of interactions of the investigated systems with HSA and AChE. Overall, the outcomes of this study provide significant understanding into the biophysical characteristics of novel thiazole-pyrazole fused benzo-coumarin systems, which could aid in the development of new cholinergic agents for the treatment of AD and materials based on coumarin motifs.
Collapse
Affiliation(s)
- Anindita Bhatta
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Jahnabi Upadhyaya
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Dipak Chamlagai
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Lincoln Dkhar
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | | | - Mohan Rao Kollipara
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
5
|
Durgun M, Akocak S, Lolak N, Topal F, Koçyiğit ÜM, Türkeş C, Işık M, Beydemir Ş. Design and Synthesis of Pyrazole Carboxamide Derivatives as Selective Cholinesterase and Carbonic Anhydrase Inhibitors: Molecular Docking and Biological Evaluation. Chem Biodivers 2024; 21:e202301824. [PMID: 38149720 DOI: 10.1002/cbdv.202301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
The present study focused on the synthesis and characterization of novel pyrazole carboxamide derivatives (SA1-12). The inhibitory effect of the compounds on cholinesterases (ChEs; AChE and BChE) and carbonic anhydrases (hCAs; hCA I and hCA II) isoenzymes were screened as in vitro. These series compounds have been identified as potential inhibitors with a KI values in the range of 10.69±1.27-70.87±8.11 nM for hCA I, 20.01±3.48-56.63±6.41 nM for hCA II, 6.60±0.62-14.15±1.09 nM for acetylcholinesterase (AChE) and 54.87±7.76-137.20 ±9.61 nM for butyrylcholinesterase (BChE). These compounds have a more effective inhibition effect when compared to the reference compounds. In addition, the potential binding positions of the compounds with high affinity for ChE and hCAs were demonstrated by in silico methods. The results of in silico and in vitro studies support each other. As a result of the present study, the compounds with high inhibitory activity for metabolic enzymes, such as ChE and hCA were designed. The compounds may be potential alternative agents used as selective ChE and hCA inhibitors in the treatment of Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Fevzi Topal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, 29100, Gümüşhane, Turkey
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, 29100, Gümüşhane, Turkey
| | - Ümit Muhammet Koçyiğit
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
6
|
Pourtaher H, Mohammadi Y, Hasaninejad A, Iraji A. Highly efficient, catalyst-free, one-pot sequential four-component synthesis of novel spiroindolinone-pyrazole scaffolds as anti-Alzheimer agents: in silico study and biological screening. RSC Med Chem 2024; 15:207-222. [PMID: 38283217 PMCID: PMC10809384 DOI: 10.1039/d3md00255a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder that impacts memory, thinking, and behavior, and currently, there is no effective cure available for its treatment. This study explored a one-pot strategy for synthesizing spiroindolinone-pyrazole derivatives through a sequential four-component condensation reaction. These derivatives were further investigated for their potential as anti-Alzheimer's disease agents. The developed synthetic procedure provides remarkable advantages, including a clean reaction profile, abundant starting materials, operational simplicity, and easy purification without traditional methods with good to excellent yields (84-96%). Next, the biological potencies of the newly synthesized spiroindolinone-pyrazole derivatives against AChE and BChE as Alzheimer's disease-related targets were determined. Also, the kinetic study and cytotoxicity of the most potent derivative were investigated. Furthermore, molecular docking and molecular dynamics evaluations were performed employing in silico tools to investigate the interaction, orientation, and conformation of the potent analog over the active site of the enzyme.
Collapse
Affiliation(s)
- Hormoz Pourtaher
- Department of Chemistry, Faculty of Sciences, Persian Gulf University Bushehr Iran
| | - Yasaman Mohammadi
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences Shiraz 7134845794 Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
| | - Alireza Hasaninejad
- Department of Chemistry, Faculty of Sciences, Persian Gulf University Bushehr Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences Shiraz 7134845794 Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
7
|
Çomaklı V, Aygül İ, Sağlamtaş R, Kuzu M, Demirdağ R, Akincioğlu H, Adem Ş, Gülçin İ. Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach. Curr Comput Aided Drug Des 2024; 20:441-451. [PMID: 37202895 DOI: 10.2174/1573409919666230518151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important. OBJECTIVES This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world. METHODS In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated. RESULTS All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively. CONCLUSION According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
Collapse
Affiliation(s)
- Veysel Çomaklı
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - İmdat Aygül
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabük University, Karabük, Türkiye
| | - Ramazan Demirdağ
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Hülya Akincioğlu
- Department of Chemistry, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Şevki Adem
- Department of Chemistry, Çankırı Karatekin University, Çankırı, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
8
|
Alkahtani HM, Almehizia AA, Al-Omar MA, Obaidullah AJ, Zen AA, Hassan AS, Aboulthana WM. In Vitro Evaluation and Bioinformatics Analysis of Schiff Bases Bearing Pyrazole Scaffold as Bioactive Agents: Antioxidant, Anti-Diabetic, Anti-Alzheimer, and Anti-Arthritic. Molecules 2023; 28:7125. [PMID: 37894604 PMCID: PMC10609138 DOI: 10.3390/molecules28207125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In continuation of our research programs for the discovery, production, and development of the pharmacological activities of molecules for various disease treatments, Schiff bases and pyrazole scaffold have a broad spectrum of activities in biological applications. In this context, this manuscript aims to evaluate and study Schiff base-pyrazole molecules as a new class of antioxidant (total antioxidant capacity, iron-reducing power, scavenging activity against DPPH, and ABTS radicals), anti-diabetic (α-amylase% inhibition), anti-Alzheimer's (acetylcholinesterase% inhibition), and anti-arthritic (protein denaturation% and proteinase enzyme% inhibitions) therapeutics. Therefore, the Schiff bases bearing pyrazole scaffold (22a, b and 23a, b) were designed and synthesized for evaluation of their antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic properties. The results for compound 22b demonstrated significant antioxidant, anti-diabetic (α-amylase% inhibition), and anti-Alzheimer's (ACE%) activities, while compound 23a demonstrated significant anti-arthritic activity. Prediction of in silico bioinformatics analysis (physicochemical properties, bioavailability radar, drug-likeness, and medicinal chemistry) of the target derivatives (22a, b and 23a, b) was performed. The molecular lipophilicity potential (MLP) of the derivatives 22a, b and 23a, b was measured to determine which parts of the surface are hydrophobic and which are hydrophilic. In addition, the molecular polar surface area (PSA) was measured to determine the polar surface area and the non-polar surface area of the derivatives 22a, b and 23a, b. This study could be useful to help pharmaceutical researchers discover a new series of potent agents that may act as an antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Amer A. Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo 12622, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
9
|
Gümüş M, Koca İ, Sert Y, Dişli A, Yenilmez Tunoğlu EN, Tutar L, Tutar Y. Triad pyrazole-thiazole-coumarin heterocyclic core effectively inhibit HSP and drive cancer cells to apoptosis. J Biomol Struct Dyn 2023; 41:14382-14397. [PMID: 36826447 DOI: 10.1080/07391102.2023.2181643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Intensive studies on hepatocellular carcinoma (HCC), which is spreading rapidly around the world and has a high mortality rate, is due to the lack of adequate preventive or curative treatment methods. Treating patients with HCC has become very challenging because of the heterogeneity in the patient population lead activation of different signaling pathways, and pathway crosstalk for patients. Therefore, understanding these molecular mechanisms and combining drugs with molecular therapies to overcome these drawbacks has become an area of utmost importance. In this study, the biological activities of the designed and characterized triad Pyrazole-Thiazol-Coumarin (PTC) compounds were determined by performing cell viability, qPCR array, apoptosis and cell cycle assays. One of the compounds (PTC10) implicitly suppresses multiple pathways (RAS/MAP kinase and PI3K-AKT) simultaneously. This action is provided by (i) arresting cancer cells at G2 phase, (ii) driving cancer cells to apoptosis and (iii) inhibiting HSP network. Remarkably, HSP is an apoptotic factor and help cancer cell to survive. HSP90 also coordinates with Cdk4/Cdc37, therefore inhibiting HSP both drives cells to arrest and apoptosis. ATP hydrolysis and aggregation assay further displayed specific HSP inhibition. Therefore, PTC provides a unique drug template for HCC treatment.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Arts and Science, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Türkiye
| | - Ali Dişli
- Department of Chemistry, Faculty of Sciences, Gazi University, Ankara, Türkiye
| | | | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Türkiye
| | - Yusuf Tutar
- Division of Biochemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Türkiye
- Molecular Oncology Division, Health Sciences Institutes, Istanbul, Türkiye
- Personalized and Immunotherapy Applied Research Center, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
10
|
Patra S, Patra P. A Brief Review on the Design, Synthesis and Biological Evaluation of Pyrazolo[ c]coumarin Derivatives. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Susanta Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, WB 721507, India
| |
Collapse
|
11
|
A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules 2023; 28:molecules28031084. [PMID: 36770750 PMCID: PMC9921523 DOI: 10.3390/molecules28031084] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative brain disorder that affects millions of people worldwide, is characterized by memory loss and cognitive decline. Low levels of acetylcholine and abnormal levels of beta-amyloid, T protein aggregation, inflammation, and oxidative stress, have been associated with AD, and therefore, research has been oriented towards the cholinergic system and primarily on acetylcholinesterase (AChE) inhibitors. In this review, we are focusing on the discovery of AChE inhibitors using computer-based modeling and simulation techniques, covering the recent literature from 2018-2022. More specifically, the review discusses the structures of novel, potent acetylcholinesterase inhibitors and their binding mode to AChE, as well as the physicochemical requirements for the design of potential AChE inhibitors.
Collapse
|
12
|
Desai NC, Joshi SB, Khasiya AG, Jadeja DJ, Mehta HK, Pandya M, Ahmad I, Patel H. Pyrazolo-imidazolidinones: Synthesis, antimicrobial assessment and molecular modelling studies by molecular mechanic and quantum mechanic approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Design, Synthesis, Biological evaluation of Isonicotinoyl-pyrazolyl-coumarin derivatives and computational study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chaudhry F, Munir R, Ashraf M, Mehr-un-Nisa, Huma R, Malik N, Hussain S, Ali Munawar M, Ain Khan M. Exploring Facile Synthesis and Cholinesterase Inhibiting Potential of Heteroaryl Substituted Imidazole Derivatives for the Treatment of Alzheimer’s Disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Fawazy NG, Panda SS, Mostafa A, Kariuki BM, Bekheit MS, Moatasim Y, Kutkat O, Fayad W, El-Manawaty MA, Soliman AAF, El-Shiekh RA, Srour AM, Barghash RF, Girgis AS. Development of spiro-3-indolin-2-one containing compounds of antiproliferative and anti-SARS-CoV-2 properties. Sci Rep 2022; 12:13880. [PMID: 35974029 PMCID: PMC9380671 DOI: 10.1038/s41598-022-17883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
A series of 1″-(alkylsulfonyl)-dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidine]-2,4″-diones 6a‒o has been synthesized through regioselective multi-component azomethine dipolar cycloaddition reaction of 1-(alkylsulfonyl)-3,5-bis(ylidene)-piperidin-4-ones 3a‒h. X-ray diffraction studies (6b‒d,h) confirmed the structures. The majority of the synthesized analogs reveal promising antiproliferation properties against a variety of human cancer cell lines (MCF7, HCT116, A431 and PaCa2) with good selectivity index towards normal cell (RPE1). Some of the synthesized agents exhibit potent inhibitory properties against the tested cell lines with higher efficacies than the standard references (sunitinib and 5-fluorouracil). Compound 6m is the most potent. Multi-targeted inhibitory properties against EGFR and VEGFR-2 have been observed for the synthesized agents. Flow cytometry supports the antiproliferation properties and shows the tested agents as apoptosis and necrosis forming. Vero cell viral infection model demonstrates the anti-SARS-CoV-2 properties of the synthesized agents. Compound 6f is the most promising (about 3.3 and 4.8 times the potency of the standard references, chloroquine and hydroxychloroquine). QSAR models explain and support the observed biological properties.
Collapse
Affiliation(s)
- Nehmedo G Fawazy
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - May A El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Reham F Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
16
|
Sodium dodecyl benzene sulfonate-catalyzed reaction for green synthesis of biologically active benzylpyrazolyl-coumarin derivatives, mechanism studies, theoretical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
18
|
Ould Lamara K, Makhloufi-Chebli M, Benazzouz-Touami A, Terrachet-Bouaziz S, Robert A, Machado-Rodrigues C, Behr JB. Synthesis, biological activities of chalcones and novel 4-acetylpyridine oximes, molecular docking of the synthesized products as acetylcholinesterase ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|