1
|
Udhayakumari D. Molecular chemosensors for hazardous anions (AcO -, CN - and F -): progress in fluorescent and colorimetric detection strategies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 341:126414. [PMID: 40398379 DOI: 10.1016/j.saa.2025.126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
This review provides a comprehensive analysis of recent advancements in the development of molecular chemosensors for the detection of hazardous anions such as acetate (AcO-), cyanide (CN-), and fluoride (F-), with a particular focus on fluorescent and colorimetric detection strategies. It examines the fundamental principles of molecular recognition and sensor design, highlighting how specific binding interactions and structural tuning contribute to enhanced selectivity and sensitivity. The review discusses innovative synthetic approaches and the integration of various signaling mechanisms that enable rapid and reliable detection in complex matrices, addressing both the challenges of interference and the need for real-time monitoring in environmental, industrial, and biomedical applications.
Collapse
|
2
|
Metin R, Keleş E, Aktan E, Barsella A, Seferoğlu Z. Synthesis of fluorescent dicyanomethylenevinyl-1,3-dicoumarin compounds with donor-acceptor-π-donor (D-A-π-D) system and investigation of their photophysical, NLO, and chemosensor properties: Part 1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125619. [PMID: 39793250 DOI: 10.1016/j.saa.2024.125619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence. For this purpose, dicyanomethylenevinyl-1,3-dicoumarin compounds were obtained and 1H NMR, 13C NMR, FT-IR, HR-MS elucidated their structures. To determine the photophysical properties of the synthesized compounds, absorption, and emission spectra were examined in solvents with different polarities, and also quantum yields and Stokes shifts were calculated. Additionally, the sensitivity/selectivity properties of the compounds towards various anions were investigated by spectrophotometric, spectrofluorometric, and 1H NMR titration methods. The limit of detection (LOD) of the sensors to sense cyanide anion was considered based on absorption titration. The pKa value of compound that could be pH sensor candidate was determined. Thermogravimetric analysis was performed as an important parameter for compounds in electro-optical (EO) systems. Additionally, nonlinear optical (NLO) properties of the compounds were calculated experimentally and theoretically. The some experimental results were explained by Density Functional Theory (DFT) and time-dependent DFT (TDDFT) calculations.
Collapse
Affiliation(s)
- Rumeysa Metin
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara 06560, Turkey
| | - Ergin Keleş
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara 06560, Turkey
| | - Ebru Aktan
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara 06560, Turkey.
| | - Alberto Barsella
- Strasbourg University, Department of Ultra-Fast Optics and Nanophotonics, IPCMS, UMR CNRS, 7504, 67034 Strasbourg Cedex 2, France
| | - Zeynel Seferoğlu
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara 06560, Turkey.
| |
Collapse
|
3
|
Banerjee R, Ali D, Mondal N, Choudhury LH. HFIP-Mediated Multicomponent Reactions: Synthesis of Pyrazole-Linked Thiazole Derivatives. J Org Chem 2024; 89:4423-4437. [PMID: 38483135 DOI: 10.1021/acs.joc.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The development of one-pot, atom, and step-economic new methods avoiding metal, harsh reaction conditions, and toxic reagents for the synthesis of medicinally important hybrid molecules bearing more than one bioactive moieties is currently one of the hot topics in organic synthesis. Herein, we report a green and efficient room temperature multicomponent reaction for the synthesis of novel pyrazole-linked thiazoles involving a one-pot C-C, C-N, and C-S bond-forming process from the reaction of aryl glyoxal, aryl thioamide, and pyrazolones in 1,1,1,3,3,3-hexafluoroisopropanol, a hydrogen bond donating reaction medium. A set of diverse hybrid molecules bearing thiazole and pyrazole moieties were prepared in good to excellent yields by using this method. This methodology can also be extended to prepare thiazole-linked barbiturates as well as imidazole-linked pyrazoles. All the products were fully characterized by spectroscopic techniques. The notable features of this protocol are room temperature, metal as well as additive-free reaction conditions, use of recyclable solvent, water as the byproduct, wide substrate scope, operational simplicity, easy purification, applicability for gram-scale synthesis, high atom economy, and the presence of two bioactive pyrazole and thiazole moieties in the products.
Collapse
Affiliation(s)
- Riddhiman Banerjee
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, India
| | - Danish Ali
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, India
| | - Nurabul Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, India
| |
Collapse
|
4
|
Sreejaya MM, M Pillai V, A A, Baby M, Bera M, Gangopadhyay M. Mechanistic analysis of viscosity-sensitive fluorescent probes for applications in diabetes detection. J Mater Chem B 2024; 12:2917-2937. [PMID: 38421297 DOI: 10.1039/d3tb02697c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Diabetes is one of the most detrimental diseases affecting the human life because it can initiate several other afflictions such as liver damage, kidney malfunctioning, and cardiac inflammation. The primary method for diabetes diagnosis involves the analysis of blood samples to quantify the level of glucose, while secondary diagnostic methods involve the qualitative analysis of obesity, fatigue, etc. However, all these symptoms start showing up only when the patient has been suffering from diabetes for a certain period of time. In order to avoid such delay in diagnosis, the development of specific fluorescent probes has attracted considerable attention. Prominent biomarkers for diabetes include abundance of certain analytes in blood serum, e.g., glucose, methylglyoxal, albumin, and reactive oxygen species; high intracellular viscosity; alteration of enzyme functionality, etc. Among these, high viscosity can greatly affect the fluorescence properties of various chromophores owing to the environment sensitivity of fluorescence spectra. In this review article, we have illustrated the application of some prominent fluorophores such as coumarin, BODIPY, xanthene, and rhodamine in the development of viscosity-dependent fluorescent probes. Detailed mechanistic aspects determining the influence of viscosity on the fluorescent properties of the probes have also been elaborated. Fluorescence mechanisms that are directly affected by the high-viscosity heterogeneous microenvironment are based on intramolecular rotations like twisted intramolecular charge transfer (TICT), aggregation-induced emission (AIE), and through-bond energy transfer (TBET). In this regard, this review article will be highly useful for researchers working in the field of diabetes treatment and fluorescent probes. It also provides a platform for the planning of futuristic clinical translation of fluorescent probes for the early-stage diagnosis and therapy of diabetes.
Collapse
Affiliation(s)
- M M Sreejaya
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India.
| | - Vineeth M Pillai
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India.
| | - Ayesha A
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India.
| | - Maanas Baby
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India.
| | | | - Moumita Gangopadhyay
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India.
| |
Collapse
|
5
|
El-Sewify IM, Shenashen MA, El-Agamy RF, Selim MS, Alqahtani NF, Elmarakbi A, Ebara M, Selim MM, Khalil MMH, El-Safty SA. Ultrasensitive Visual Tracking of Toxic Cyanide Ions in Biological Samples Using Biocompatible Metal-Organic Frameworks Architectures. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133271. [PMID: 38141313 DOI: 10.1016/j.jhazmat.2023.133271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The extraordinary accumulation of cyanide ions within biological cells is a severe health risk. Detecting and tracking toxic cyanide ions within these cells by simple and ultrasensitive methodologies are of immense curiosity. Here, continuous tracking of ultimate levels of CN--ions in HeLa cells was reported employing biocompatible branching molecular architectures (BMAs). These BMAs were engineered by decorating colorant-laden dendritic branch within and around the molecular building hollows of the geode-shelled nanorods of organic-inorganic Al-frameworks. Batch-contact methods were utilized to assess the potential of hollow-nest architecture for inhibition/evaluation of toxicant CN--ions within HeLa cells. The nanorod BMAs revealed significant potential capabilities in monitoring and tracking of CN- ions (88 parts per trillion) in biological trials within seconds. These results demonstrated sufficient evidence for the compatibility of BMAs during HeLa cell exposure. Under specific conditions, the BMAs were utilized for in-vitro fluorescence tracking/sensing of CN- in HeLa cells. The cliff swallow nest with massive mouths may have the potential to reduce the health hazards associated with toxicant exposure in biological cells.
Collapse
Affiliation(s)
- Islam M El-Sewify
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Mohamed A Shenashen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt
| | - Rasha F El-Agamy
- College of Computer Science and Engineering, Taibah University, Yanbu 966144 Saudi Arabia
| | - Mohammed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt
| | - Norah F Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Sherif A El-Safty
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan.
| |
Collapse
|
6
|
Battal A, Kassa SB, Altinolcek Gultekin N, Tavasli M, Onganer Y. A reaction-based carbazole-dicyanovinyl conjugated colorimetric and ratiometric fluorescent probe for selective detection of cyanide ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123350. [PMID: 37688886 DOI: 10.1016/j.saa.2023.123350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
In the present work, 4-(9'-hexylcarbazol-3'-yl)benzylidenemalononitrile 5 (probe L) was tested as a colorimetric and ratiometric fluorescent probe in dimethyl sulfoxide (DMSO) medium towards anions, cations and neutral molecules. The sensing properties of probe L were investigated by using UV-Vis absorption and fluorescence spectroscopy techniques. Probe L showed selectivity and sensitivity towards cyanide ions (CN-) in the presence of analytes used. Upon the addition of CN-, intramolecular charge transfer (ICT) band at 425 nm in UV spectrum disappeared. In addition, ICT emission intensity at 593 nm decreased and ligand-centred (LC) emission intensity at 480 nm increased. These findings indicate that nucleophilic conjugate addition of CN- to the dicyanovinyl group of probe L successfully occurs, hence forming a new adduct between probe L and CN-. In this adduct, π-conjugation was partially blocked, and the ICT transfer was hindered. Adduct formation was proved by Job's plot, 1H NMR and FT-IR analysis. Probe L showed very low limit of detection (LOD) value of 1.467 nM towards CN-. Probe L was also applied to the CN- detection in real-world water samples by the spike and recovery method. The maximum relative standard deviation (RSD) value was 4.24, indicating this method works successfully. Therefore, probe L could find a potential use in detection of CN- in liquid media.
Collapse
Affiliation(s)
- Ahmet Battal
- Department of Elementary School of Education, Faculty of Education, Muş Alparslan University, 49100 Muş, Turkiye
| | - Solomon Bezabeh Kassa
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkiye
| | - Nuray Altinolcek Gultekin
- Department of Chemistry, Faculty of Science-Art, Bursa Uludag University, 16059 Nilufer, Bursa, Turkiye
| | - Mustafa Tavasli
- Department of Chemistry, Faculty of Science-Art, Bursa Uludag University, 16059 Nilufer, Bursa, Turkiye.
| | - Yavuz Onganer
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkiye.
| |
Collapse
|
7
|
Shaydyuk Y, Bashmakova NV, Klishevich GV, Dmytruk AM, Kachkovsky OD, Kuziv IB, Dubey IY, Belfield KD, Bondar MV. Nature of Linear Spectral Properties and Fast Relaxations in the Excited States and Two-Photon Absorption Efficiency of 3-Thiazolyl and 3-Phenyltiazolyl Coumarin Derivatives. ACS OMEGA 2023; 8:11564-11573. [PMID: 37008079 PMCID: PMC10061630 DOI: 10.1021/acsomega.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Coumarin-based fluorescent agents play an important role in the manifold fundamental scientific and technological areas and need to be carefully studied. In this research, linear photophysics, photochemistry, fast vibronic relaxations, and two-photon absorption (2PA) of the coumarin derivatives, methyl 4-[2-(7-methoxy-2-oxo-chromen-3-yl)thiazol-4-yl]butanoate (1) and methyl 4-[4-[2-(7-methoxy-2-oxo-chromen-3-yl)thiazol-4-yl]phenoxy]butanoate (2), were comprehensively analyzed using stationary and time-resolved spectroscopic techniques, along with quantum-chemical calculations. The steady-state one-photon absorption, fluorescence emission, and excitation anisotropy spectra, as well as 3D fluorescence maps of 3-hetarylcoumarins 1 and 2 were obtained at room temperature in solvents of different polarities. The nature of relatively large Stokes shifts (∼4000-6000 cm-1), specific solvatochromic behavior, weak electronic π → π* transitions, and adherence to Kasha's rule were revealed. The photochemical stability of 1 and 2 was explored quantitatively, and values of photodecomposition quantum yields, on the order of ∼10-4, were determined. A femtosecond transient absorption pump-probe technique was used for the investigation of fast vibronic relaxation and excited-state absorption processes in 1 and 2, while the possibility of efficient optical gain was shown for 1 in acetonitrile. The degenerate 2PA spectra of 1 and 2 were measured by an open aperture z-scan method, and the maximum 2PA cross-sections of ∼300 GM were obtained. The electronic nature of the hetaryl coumarins was analyzed by quantum-chemical calculations using DFT/TD-DFT level of theory and was found to be in good agreement with experimental data.
Collapse
Affiliation(s)
- Yevgeniy
O. Shaydyuk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki, 46, Kyiv 03028, Ukraine
| | - Nataliia V. Bashmakova
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street, 60, Kyiv 01601, Ukraine
| | - George V. Klishevich
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki, 46, Kyiv 03028, Ukraine
| | - Andriy M. Dmytruk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki, 46, Kyiv 03028, Ukraine
| | - Olexiy D. Kachkovsky
- V.P.
Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the
NAS of Ukraine, Murmanskaya
Street, 1, Kyiv 02660, Ukraine
| | - Iaroslav B. Kuziv
- Institute
of Molecular Biology and Genetics of the NAS of Ukraine, Zabolotnogo Street, 150, Kyiv 03141, Ukraine
| | - Igor Ya. Dubey
- Institute
of Molecular Biology and Genetics of the NAS of Ukraine, Zabolotnogo Street, 150, Kyiv 03141, Ukraine
| | - Kevin D. Belfield
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Mykhailo V. Bondar
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki, 46, Kyiv 03028, Ukraine
| |
Collapse
|
8
|
Yahya M, Seferoğlu N, Kaplan G, Nural Y, Barsella A, Seferoğlu Z. Synthesis, nonlinear optical properties, photophysical, and theoretical studies of azo dye bearing coumarin-thiophene. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
González-Montiel S, Velázquez-Jiménez R, Segovia-Pérez R, Fragoso-Soto W, Martínez-Otero D, Andrade-López N, Salazar-Pereda V, Cruz-Borbolla J. η3-allyl-Pd(II) complexes of 2-, 3- and 4-pyridylmethyl-coumarin esters. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Tandel SN, Mistry P, Patel PN. Novel chalcone scaffolds of benzothiophene as an efficient real time hydrazine sensor: Synthesis and single crystal XRD studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Özbek BB, Aktan E, Seferoğlu Z. Novel push–pull organic dyes bearing Indan-2-one/Inden-1-ylidene and coumarin: Synthesis and photophysical properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Formate paddlewheel of a metal–organic framework with open metal sites as a potential adsorbent and sensor for different species of fluoride (F−, HF, F2H−): a DFT study. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis - A mechanistic approach. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Jothi D, Munusamy S, Manoj Kumar S, Enbanathan S, Kulathu Iyer S. A benzothiazole-based new fluorogenic chemosensor for the detection of CN - and its real-time application in environmental water samples and living cells. RSC Adv 2022; 12:8570-8577. [PMID: 35424806 PMCID: PMC8984840 DOI: 10.1039/d1ra08846g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the cyanide ion is used in a wide range of industries and is harmful to both human health and the environment, a number of research efforts are dedicated to creating fluorescence sensors for the detection of cyanide (CN-). Herein, for the fluorescence detection of CN-, a new highly selective and sensitive sensor 2-(3-(benzo[d]thiazol-2-yl)-4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (BID) was created by conjugating a benzothiazole moiety with 1H-indene-1,3(2H)-dione. The donor and acceptor components of this hybrid receptor were covalently connected through a double bond. The nucleophilic addition of a cyanide anion to the BID inhibits the intramolecular charge transfer (ICT) transition, resulting in spectral and colour alterations in the receptor. When the solvent polarity was increased from n-hexane to methanol, this molecule exhibited a bathochromic shift in the emission wavelength (610 to 632 nm), suggesting the presence of a solvatochromic action. The sensor BID has shown strong specificity towards CN- by interrupting its internal charge transfer (ICT), resulting in a significant change in the UV-vis spectrum and a notable blue shift in the fluorescence emission spectrum. The cyanide anion (CN-) is responsible for the optical alterations observed by BID, as opposed to the other anions examined. The detection limit was 5.97 nM, significantly less than the WHO's permitted amount of CN- in drinking water. The experimental findings indicate that BID's fluorescence response to CN- is pH insensitive throughout a wide pH range of 6.0 to 12.0. The interaction mechanism between the BID and CN- ions has been studied by HRMS, 1H-NMR titration experiments, FT-IR, and DFT, which confirmed the nucleophilic addition of CN- on vinylidene and subsequent disturbance of ICT. Additionally, we demonstrated the real-time detection application of CN- in environmental water samples and live-cell imaging.
Collapse
Affiliation(s)
- Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Sathishkumar Munusamy
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | |
Collapse
|