1
|
Rios T, Maximiano MR, Fernandes FC, Amorim GC, Porto WF, Buccini DF, Nieto Marín V, Feitosa GC, Freitas CDP, Barra JB, Alonso A, Grossi de Sá MF, Lião LM, Franco OL. Anti-Staphy Peptides Rationally Designed from Cry10Aa Bacterial Protein. ACS OMEGA 2024; 9:29159-29174. [PMID: 39005792 PMCID: PMC11238290 DOI: 10.1021/acsomega.3c07455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Bacterial infections pose a significant threat to human health, constituting a major challenge for healthcare systems. Antibiotic resistance is particularly concerning in the context of treating staphylococcal infections. In addressing this challenge, antimicrobial peptides (AMPs), characterized by their hydrophobic and cationic properties, unique mechanism of action, and remarkable bactericidal and immunomodulatory capabilities, emerge as promising alternatives to conventional antibiotics for tackling bacterial multidrug resistance. This study focuses on the Cry10Aa protein as a template for generating AMPs due to its membrane-penetrating ability. Leveraging the Joker algorithm, six peptide variants were derived from α-helix 3 of Cry10Aa, known for its interaction with lipid bilayers. In vitro, antimicrobial assays determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) required for inhibiting the growth of Staphylococcus aureus, Escherichia coli, Acinetobacter baummanii, Enterobacter cloacae, Enterococcus facallis, Klebsiella pneumonia, and Pseudomonas aeruginosa. Time-kill kinetics were performed using the parental peptide AMPCry10Aa, as well as AMPCry10Aa_1 and AMPCry10Aa_5, against E. coli ATCC, S. aureus 111 and S. aureus ATCC strains showing that AMPCry10Aa_1 and AMPCry10Aa_5 peptides can completely reduce the initial bacterial load with less than 2 h of incubation. AMPCry10Aa_1 and AMPCry 10Aa_5 present stability in human serum and activity maintenance up to 37 °C. Cytotoxicity assays, conducted using the MTT method, revealed that all of the tested peptides exhibited cell viability >50% (IC50). The study also encompassed evaluations of the structure and physical-chemical properties. The three-dimensional structures of AMPCry10Aa and AMPCry10Aa_5 were determined through nuclear magnetic resonance (NMR) spectroscopy, indicating the adoption of α-helical segments. Electron paramagnetic resonance (EPR) spectroscopy elucidated the mechanism of action, demonstrating that AMPCry10Aa_5 enters the outer membranes of E. coli and S. aureus, causing substantial increases in lipid fluidity, while AMPCry10Aa slightly increases lipid fluidity in E. coli. In conclusion, the results obtained underscore the potential of Cry10Aa as a source for developing antimicrobial peptides as alternatives to conventional antibiotics, offering a promising avenue in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Thuanny
Borba Rios
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Mariana Rocha Maximiano
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Fabiano Cavalcanti Fernandes
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| | - Gabriella Cavalcante Amorim
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Embrapa
Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte—Asa Norte, Brasília, DF 70770-917, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
| | - Valentina Nieto Marín
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
| | - Gabriel Cidade Feitosa
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Pós-Graduação
em Patologia Molecular, Universidade de
Brasília, Campus
Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | | | - Juliana Bueno Barra
- Laboratório
de RMN, Instituto de Química, Universidade
Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Antonio Alonso
- Instituto
de Física, Universidade Federal de
Goiás, Goiânia, GO 74690-900, Brazil
| | - Maria Fátima Grossi de Sá
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
- Embrapa
Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte—Asa Norte, Brasília, DF 70770-917, Brazil
| | - Luciano Morais Lião
- Laboratório
de RMN, Instituto de Química, Universidade
Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Octávio Luiz Franco
- S-Inova
Biotech, Programa de Pós-Graduação
em Biotecnologia Universidade Católica Dom Bosco, Av. Tamandaré, 6000—Jardim
Seminario, Campo Grande, MS 79117-900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em
Ciências Genômicas e Biotecnologia Universidade Católica
de Brasília, St.
de Grandes Áreas Norte 916—Asa Norte, Brasília, DF 70790-160, Brazil
| |
Collapse
|
2
|
Khoumeri O, Hutter S, Primas N, Castera-Ducros C, Carvalho S, Wyllie S, Efrit ML, Fayolle D, Since M, Vanelle P, Verhaeghe P, Azas N, El-Kashef H. Synthesis of Nitrostyrylthiazolidine-2,4-dione Derivatives Displaying Antileishmanial Potential. Pharmaceuticals (Basel) 2024; 17:878. [PMID: 39065730 PMCID: PMC11280390 DOI: 10.3390/ph17070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
A series of 61 thiazolidine-2,4-diones bearing a styryl group at position 5 was synthesized in 2-5 steps and their structure was proved by elemental and spectral analyses. The compounds obtained were evaluated in vitro against the promastigote stage of the kinetoplastid parasite Leishmania infantum and the human HepG2 cell line, to determine selectivity indices and to compare their activities with those of antileishmanial reference drugs. The study of structure-activity relationships indicated the potential of some derivatives bearing a nitro group on the phenyl ring, especially when located at the meta position. Thus, among the tested series, compound 14c appeared as a hit compound with good antileishmanial activity (EC50 = 7 µM) and low cytotoxicity against both the hepatic HepG2 and macrophage THP-1 human cell lines (CC50 = 101 and 121 µM, respectively), leading to good selectivity indices (respectively, 14 and 17), in comparison with the reference antileishmanial drug compound miltefosine (EC50 = 3.3 µM, CC50 = 85 and 30 µM, SI = 26 and 9). Regarding its mechanism of action, among several possibilities, it was demonstrated that compound 14c is a prodrug bioactivated, predominantly by L. donovani nitroreductase 1, likely leading to the formation of cytotoxic metabolites that form covalent adducts in the parasite. Finally, compound 14c is lipophilic (measured CHI LogD7.7 = 2.85) but remains soluble in water (measured PBS solubility at pH7.4 = 16 µM), highlighting the antileishmanial potential of the nitrostyrylthiazolidine-2,4-dione scaffold.
Collapse
Affiliation(s)
- Omar Khoumeri
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
| | - Sébastien Hutter
- IHU Méditerranée Infection, UMR RITMES, TEAM-VEPTE, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (S.H.); (N.A.)
| | - Nicolas Primas
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Caroline Castera-Ducros
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.C.); (S.W.)
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.C.); (S.W.)
| | - Mohamed Lotfi Efrit
- Laboratoire de Synthèse Organique et Hétérocyclique Sélective-Evaluation D’activité Biologique, LR17ES01, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia;
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, DruiD Platform, Boulevard Becquerel, 14000 Caen, France; (D.F.); (M.S.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, DruiD Platform, Boulevard Becquerel, 14000 Caen, France; (D.F.); (M.S.)
| | - Patrice Vanelle
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Pierre Verhaeghe
- CNRS, Département de Pharmacochimie Moléculaire UMR 5063, University Grenoble Alpes, 38041 Grenoble, France;
- LCC-CNRS, UPR8241, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Nadine Azas
- IHU Méditerranée Infection, UMR RITMES, TEAM-VEPTE, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (S.H.); (N.A.)
| | - Hussein El-Kashef
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Faculty of Pharmacy, Sphinx University, Regional Road, New Assiut 71515, Egypt
| |
Collapse
|
3
|
Arzine A, Abchir O, Chalkha M, Chebbac K, Rhazi Y, Barghady N, Yamari I, El Moussaoui A, Nakkabi A, Akhazzane M, Bakhouch M, Chtita S, El Yazidi M. Design, synthesis, In-vitro, In-silico and DFT studies of novel functionalized isoxazoles as antibacterial and antioxidant agents. Comput Biol Chem 2024; 108:107993. [PMID: 38071761 DOI: 10.1016/j.compbiolchem.2023.107993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/22/2024]
Abstract
A series of new isoxazolederivatives incorporating the sulfonate ester function has been synthesized from 2-benzylidenebenzofuran-3(2 H)-one, known as aurone. The synthesis of the target compounds was carried out following an efficient methodology that allows access to the desired products in a reproducible way and with good yield. The structures of the synthesized compounds were established using NMR (1H and 13C) spectroscopy and mass spectrometry. A theoretical study was performed to optimize the geometrical structures and to calculate the structural and electronic parameters of the synthesized compounds. The calculations were also carried out to understand the influence and the effect of substitutions on the chemical reactivity of the studied compounds. The synthesized isoxazoles were screened for their antioxidant and antibacterial activities. The findings demonstrate that the studied compounds exhibit good to moderate antibacterial activity against the tested bacteria (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli). Moreover, a number of the tested isoxazole derivatives exhibit high effectiveness against DPPH free radicals. Besides that, molecular docking studies were carried out to predict binding affinity and identify the most likely binding interactions between the active molecules and the target microorganisms' proteins. A 100 ns molecular dynamics study was then conducted to examine the dynamic behavior and stability of the highly potent isoxazole 4e in complex with the target bacterial proteins. Finally, the ADMET analyses suggest that all the synthesized isoxazoles have good pharmacokinetic profiles and non-toxicity and non-carcinogenicity in biological systems.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Najoua Barghady
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Mohamed Akhazzane
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, Fez 30000, Morocco
| | - Mohamed Bakhouch
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| |
Collapse
|
4
|
The Trisubstituted Isoxazole MMV688766 Exerts Broad-Spectrum Activity against Drug-Resistant Fungal Pathogens through Inhibition of Lipid Homeostasis. mBio 2022; 13:e0273022. [PMID: 36300931 PMCID: PMC9765174 DOI: 10.1128/mbio.02730-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida species are among the most prevalent causes of systemic fungal infection, posing a growing threat to public health. While Candida albicans is the most common etiological agent of systemic candidiasis, the frequency of infections caused by non-albicans Candida species is rising. Among these is Candida auris, which has emerged as a particular concern. Since its initial discovery in 2009, it has been identified worldwide and exhibits resistance to all three principal antifungal classes. Here, we endeavored to identify compounds with novel bioactivity against C. auris from the Medicines for Malaria Venture's Pathogen Box library. Of the five hits identified, the trisubstituted isoxazole MMV688766 emerged as the only compound displaying potent fungicidal activity against C. auris, as well as other evolutionarily divergent fungal pathogens. Chemogenomic profiling, as well as subsequent metabolomic and phenotypic analyses, revealed that MMV688766 disrupts cellular lipid homeostasis, driving a decrease in levels of early sphingolipid intermediates and fatty acids and a concomitant increase in lysophospholipids. Experimental evolution to further probe MMV688766's mode of action in the model fungus Saccharomyces cerevisiae revealed that loss of function of the transcriptional regulator HAL9 confers resistance to MMV688766, in part through the upregulation of the lipid-binding chaperone HSP12, a response that appears to assist in tolerating MMV688766-induced stress. The novel mode of action we have uncovered for MMV688766 against drug-resistant fungal pathogens highlights the broad utility of targeting lipid homeostasis to disrupt fungal growth and how screening structurally-diverse chemical libraries can provide new insights into resistance-conferring stress responses of fungi. IMPORTANCE As widespread antimicrobial resistance threatens to propel the world into a postantibiotic era, there is a pressing need to identify mechanistically distinct antimicrobial agents. This is of particular concern when considering the limited arsenal of drugs available to treat fungal infections, coupled with the emergence of highly drug-resistant fungal pathogens, including Candida auris. In this work, we demonstrate that existing libraries of drug-like chemical matter can be rich resources for antifungal molecular scaffolds. We discovered that the small molecule MMV688766, from the Pathogen Box library, displays previously undescribed broad-spectrum fungicidal activity through perturbation of lipid homeostasis. Characterization of the mode of action of MMV688766 provided new insight into the protective mechanisms fungi use to cope with the disruption of lipid homeostasis. Our findings highlight that elucidating the genetic circuitry required to survive in the presence of cellular stress offers powerful insights into the biological pathways that govern this important phenotype.
Collapse
|
5
|
Alonso L, Dorta ML, Alonso A. Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183977. [PMID: 35654148 DOI: 10.1016/j.bbamem.2022.183977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Spin label electron paramagnetic resonance (EPR) spectroscopy was used to study the mechanisms of action of ivermectin and curcumin against Leishmania (L.) amazonensis promastigotes. EPR spectra showed that treatment of the parasites with both compounds results in plasma membrane rigidity due to oxidative processes. With the IC50 and EPR measurements for assays using different parasite concentrations, estimations could be made for the membrane-water partition coefficient (KM/W), and the concentration of the compound in the membrane (cm50) and in the aqueous phase (cw50), which inhibits cell growth by 50%. The KM/W values indicated that ivermectin has a greater affinity than curcumin for the parasite membrane. Therefore, the activity of ivermectin was higher for experiments with low cell concentrations, but for concentrations greater than 1.5 × 108 parasites/mL the compounds did not show significantly different results. The cm50 values indicated that the concentration of compound in the membrane leading to growth inhibition or membrane alteration is approximately 1 M for both ivermectin and curcumin. This high membrane concentration suggests that many ivermectin molecules per chlorine channel are needed to cause an increase in chlorine ion influx.
Collapse
Affiliation(s)
- Lais Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
6
|
Radwan HA, Ahmad I, Othman IM, Gad-Elkareem MA, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|