1
|
Ye Y, Wei Y, Ke Y, Liu W, Wang Z, Tan Y, Chen N, Wu T, Zhou J, Zhang X, Wu X, Xie L. One-Step Transformations from ACQ Luminogens to DSEgens via the Boc Protection Process. ACS OMEGA 2023; 8:21008-21015. [PMID: 37323382 PMCID: PMC10268262 DOI: 10.1021/acsomega.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Dual-state emission luminogens (DSEgens), as a new type of luminescent materials that can effectively emit light in solution and solid state, have attracted tremendous attention due to their potential application in chemical sensing, biological imaging, organic electronic devices, etc. In this study, two new rofecoxib derivatives ROIN and ROIN-B have been synthesized, and their photophysical properties are fully investigated by experimental studies and theoretical calculations. The key intermediate ROIN, resulting from one-step conjugation of rofecoxib with an indole unit, shows the classical aggregation-caused quenching (ACQ) effect. Meanwhile, by introducing a tert-butoxycarbonyl (Boc) group on the basis of ROIN without enlarging the π conjugation system, ROIN-B was successfully developed with an obvious DSE property. In addition, both fluorescent behaviors and their transformation from ACQ to DSE were elucidated clearly by going through the analysis of their single X-ray data. Moreover, the target ROIN-B, as a new DSEgens, also displays reversible mechanofluorochromism and lipid droplet-specific imaging ability in HeLa cells. Taken together, this work proposes a precise molecular design strategy to afford a new DSEgens, which may provide guidance for the future exploration of new DSEgens.
Collapse
Affiliation(s)
- Yuqiu Ye
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
- Mycological
Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongbo Wei
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Yanbing Ke
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Wei Liu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Zexin Wang
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Yinfeng Tan
- Hainan
Key Laboratory for Research and Development of Tropical Herbs, School
of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Nannan Chen
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Tong Wu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Jingming Zhou
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| | - Xiaopo Zhang
- Hainan
Key Laboratory for Research and Development of Tropical Herbs, School
of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaoping Wu
- Mycological
Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lijun Xie
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, China
| |
Collapse
|
2
|
Miroslaw B, Demchuk OM, Luboradzki R, Tyszczuk-Rotko K. Low-Molecular-Weight Organogelators Based on N-dodecanoyl-L-amino Acids-Energy Frameworks and Supramolecular Synthons. MATERIALS (BASEL, SWITZERLAND) 2023; 16:702. [PMID: 36676438 PMCID: PMC9867098 DOI: 10.3390/ma16020702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Lauric acid was used to synthesize the low-molecular-weight organogelators (LMOGs), derivatives of two endogenous (L)-alanine, (L)-leucine, and three exogenous (L)-valine, (L)-phenylalanine, and (L)-proline amino acids. The nature of processes responsible for the gel formation both in polar and in apolar solvents of such compounds is still under investigation. Knowing that the organization of surfactant molecules affects the properties of nano scale materials and gels, we decided to elucidate this problem using crystallographic diffraction and energy frameworks analysis. The single crystals of the mentioned compounds were produced successfully from heptane/tBuOMe mixture. The compounds form lamellar self-assemblies in crystals. The energetic landscapes of single crystals of a series of studied amphiphilic gelators have been analyzed to explore the gelling properties. The presented results may be used as model systems to understand which supramolecular interactions observed in the solid state and what energy contributions are desired in the designing of new low-molecular-weight organic gelators.
Collapse
Affiliation(s)
- Barbara Miroslaw
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| | - Oleg M. Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, 1h-Konstantynów St., 20-708 Lublin, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| |
Collapse
|
3
|
Rana M, Fatima A, Siddiqui N, Dar SH, Javed S, Rahisuddin. Synthesis, single crystal structure, DNA binding and antioxidant properties of 5-(4-(dimethylamino)phenyl)-3-(thiophen-2-yl)-pyrazoline-1-carbothioamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|