1
|
Hofny HA, Mohamed MFA, Hassan HA, Abdelhafez ESMN, Abuo-Rahma GEDA. A review of recent advances in anticancer activity and SAR of pyrazole derivatives. Arch Pharm (Weinheim) 2025; 358:e2400470. [PMID: 40091584 DOI: 10.1002/ardp.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The present review serves to highlight the antitumor worth of pyrazole derivatives. Several active pyrazole-based anticancer compounds proposed by a huge number of scientists worldwide are reported. Regarding the development of novel pyrazole-based anticancer agents at a faster tone, there is a need to correlate the latest information with previously available information to understand the situation of this moiety in anticancer drug discovery studies. Herein, different anticancer pyrazoles are classified according to their mode of action at different anticancer targets. The results provided evidence that pyrazole derivatives have potential applications for the treatment of a variety of tumor types. From the study's findings, the structure-activity relationship (SAR) results demonstrated that all the compounds containing substituted pyrazole represent an important scaffold for anticancer activities. Publications in this area are increasing, and therefore, new therapeutic applications involving members of pyrazole derivatives could be discovered in the near future, as many prospects have not been sufficiently studied so far for other targets. In other words, this review provides an overview of the state of knowledge about the structural characteristics of the most recent anticancer pyrazole derivatives and their SAR with various targets. This will allow medicinal chemists to identify promising structures to guide the design and synthesis of more effective and safer anticancer candidates.
Collapse
Affiliation(s)
- Heba A Hofny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| |
Collapse
|
2
|
Ma M. Current scenario of pyrazole hybrids with anti-breast cancer therapeutic applications. Arch Pharm (Weinheim) 2024; 357:e2400344. [PMID: 38943440 DOI: 10.1002/ardp.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer stands as the leading cause of cancer-related deaths among women globally, but current therapy is restricted to the serious adverse effects and multidrug resistance, necessitating the exploration of novel, safe, and efficient anti-breast cancer chemotherapeutic agents. Pyrazoles exhibit excellent potential for utilization as effective anti-breast cancer agents due to their ability to act on various biological targets. Particularly, pyrazole hybrids demonstrated the advantage of targeting multiple pathways, and some of them, which are exemplified by larotrectinib (pyrazolo[1,5-a]pyrimidine hybrid), can be applied for breast cancer therapy. Thus, pyrazole hybrids hold great promise as useful therapeutic interventions for breast cancer. The aim of this review is to summarize the current scenario of pyrazole hybrids with in vitro and/or in vivo anti-breast cancer potential, along with the modes of action and structure-activity relationships, covering articles published from 2020 to the present, to streamline the development of rational, effective and safe anti-breast cancer candidates.
Collapse
Affiliation(s)
- Mengyu Ma
- Department of Pharmaceutical Engineering, School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
3
|
Nagavath R, Thupurani MK, Badithapuram V, Manchal R, Vasam CS, Thirukovela NS. Organo NHC catalyzed aqueous synthesis of 4β-isoxazole-podophyllotoxins: in vitro anticancer, caspase activation, tubulin polymerization inhibition and molecular docking studies. RSC Adv 2024; 14:23574-23582. [PMID: 39070249 PMCID: PMC11276401 DOI: 10.1039/d4ra04297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
We present, for the first time, the organo-N-heterocyclic carbene (NHC) catalyzed 1,3-dipolar cycloaddition of 4β-O-propargyl podophyllotoxin (1) with in situ aromatic nitrile oxides to afford regioselective 4β-isoxazolepodophyllotoxin hybrids (6a-n) in benign aqueous-organic media. Preliminary anticancer activity results showed that compound 6e displayed superior activity against MCF-7, HeLa and MIA PaCa2 human cell lines compared with podophyllotoxin. Compounds 6j and 6n showed greater activity against the MCF-7 cell line than the positive control. Caspase activation studies revealed that compound 6e at 20 μg ml-1 concentration had greater caspase 3/7 activation in MCF-7 and MIAPaCa2 cells than podophyllotoxin. Furthermore, in vitro tubulin polymerization inhibition studies revealed that compound 6e showed comparable activity with podophyllotoxin. Finally, in silico molecular docking studies of compounds 6e, 6j, 6n and podophyllotoxin on α,β-tubulin (pdb id 1SA0) revealed that compound 6n showed excellent binding energies and inhibition constants compared with podophyllotoxin.
Collapse
Affiliation(s)
- Rajkumar Nagavath
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Murali Krishna Thupurani
- Department of Biotechnology, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | | | - Narasimha Swamy Thirukovela
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| |
Collapse
|
4
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg Chem 2023; 136:106548. [PMID: 37094479 DOI: 10.1016/j.bioorg.2023.106548] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The DNA topoisomerase enzymes are widely distributed throughout all spheres of life and are necessary for cell function. Numerous antibacterial and cancer chemotherapeutic drugs target the various topoisomerase enzymes because of their roles in maintaining DNA topology during DNA replication and transcription. Agents derived from natural products, like anthracyclines, epipodophyllotoxins and quinolones, have been widely used to treat a variety of cancers. A very active field of fundamental and clinical research is the selective targeting of topoisomerase II enzymes for cancer treatment. This thematic review summarizes the recent advances in the anticancer activity of the most potent topoisomerase II inhibitors (anthracyclines, epipodophyllotoxins and fluoroquinolones) their modes of action, and structure-activity relationships (SARs) organized chronologically in the last ten years from 2013 to 2023. The review also highlights the mechanism of action and SARs of promising new topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Hadeer K Swedan
- Central Administration of Research and Health Development, Ministry of Health, and Population (MoHP), Cairo P.O. Box 11516, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Salwa E Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt
| |
Collapse
|
6
|
Bangaru M, Kumar Nukala S, Kannekanti PK, Sirassu N, Manchal R, Swamy Thirukovela N. Synthesis of Quinoline‐Thiazolidine‐2,4‐dione Coupled Pyrazoles as in vitro EGFR Targeting Anti‐Breast Cancer Agents and Their in silico Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Mamidala A, Bokkala K, Thirukovela NS, Sirassu N, Bandari S, Nukala SK. Synthesis of Quinoline‐Morpholine‐Coupled 1,2,3‐Triazole Hybrids as
In vitro
EGFR inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202203763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Annapurna Mamidala
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
- Telangana Social Welfare Residential Degree and PG College for Women, Mahendrahills Hyderabad Telangana India
| | - Karthik Bokkala
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
- Department of Chemistry Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar Hyderabad Telangana India
| | | | - Narsimha Sirassu
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
| | - Srinivas Bandari
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya (Deemed to be University), Kishanpura Hanumakonda Telangana India
| |
Collapse
|
8
|
Nagavath R, Nukala SK, Sagam RR, Sirassu N, Guguloth V, Kamarajugadda P, Paidakula S, Thirukovela NS. Anticancer Evaluation of Some New 4
β
‐Imidazolopodophyllotoxin ‐Aromatic Amides. ChemistrySelect 2022. [DOI: 10.1002/slct.202202200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajkumar Nagavath
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Ravikumar Reddy Sagam
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Narsimha Sirassu
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Veeranna Guguloth
- Department of Chemistry Kakatiya University Warangal Telanagna India
| | | | - Suresh Paidakula
- Aragen Life Sciences Private Ltd Nacharam Hyderabad, Telanagna India
| | | |
Collapse
|
9
|
Benarjee V, Saritha B, Hari Gangadhar K, Sailaja B. Synthesis of some new 1,4-benzoxazine-pyrazoles in water as EGFR targeting anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Gangadhar KH, Benarjee V, Ratnamala A. Synthesis of Coumarin‐Thiazolidine‐2,4‐dione‐Pyrazole Hybrids as Epidermal Growth Factor Receptor (EGFR)‐Targeted Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Velaga Benarjee
- Department of Inorganic and Analytical Chemistry Andhra University Visakhapatnam Andhra Pradesh India
| | | |
Collapse
|
11
|
Wang R, Zhao Y, Huang Z, Zhou Y, Wang W, Xuan Y, Zhen Y, Ju B, Guo S, Zhang S. Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS NANO 2022; 16:3943-3954. [PMID: 35166522 DOI: 10.1021/acsnano.1c09391] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low drug delivery efficiency elevates the cost of medication, lowers the therapeutic efficacy, and appears as a leading reason for unmet needs in anticancer therapies. Herein, we report the development of self-assembled podophyllotoxin-loaded lipid bilayer nanoparticles that inhibit the production of programmed cell death ligand 1 in lung cancer cells and promote tumor-specific immune responses, thus offering a strategy for regulating the immunosuppressive microenvironment of tumors. In addition, encapsulation of podophyllotoxin in the nanoparticles reduced its systemic toxicity, enhanced its penetration into tumors, and increased its antitumor efficacy. Systemic injection of the nanoparticles into tumor-bearing mice not only prevented tumor immune escape but also significantly inhibited tumor growth and extended survival. In general, the podophyllotoxin-loaded nanoparticles exhibited both immunological effects and antitumor effects in addition to having better targeting activity and fewer side effects than free podophyllotoxin. We expect our findings to facilitate the development of therapies for lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|