2
|
Saeed A, Ejaz SA, Khalid A, Channar PA, Aziz M, Abbas Q, Wani TA, Alsaif NA, Alanazi MM, Al-Hossaini AM, Altwaijry N, Zargar S, Elhadi M, Hökelek T. Acetophenone-Based 3,4-Dihydropyrimidine-2(1H)-Thione as Potential Inhibitor of Tyrosinase and Ribonucleotide Reductase: Facile Synthesis, Crystal Structure, In-Vitro and In-Silico Investigations. Int J Mol Sci 2022; 23:13164. [PMID: 36361953 PMCID: PMC9658835 DOI: 10.3390/ijms232113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/09/2023] Open
Abstract
The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 μM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aqsa Khalid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of of Information Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq 32038, Bahrain
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju 314-701, Chungnam, Korea
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Muawya Elhadi
- Department of Physics, Faculty of Science and Humanities, Ed Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
4
|
Sonia C, Devi T, Karlo T. DFT study on the structural and chemical properties of Janus kinase inhibitor drug Baricitinib. MATERIALS TODAY. PROCEEDINGS 2022; 65:2586-2595. [PMID: 36032699 PMCID: PMC9395141 DOI: 10.1016/j.matpr.2022.04.868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Baricitinib is a small molecule used to treat moderate to severe rheumatoid arthritis (RA) in adults. It is an inhibitor of Janus kinase 1 and 2 (JAK1 and JAK2). It has also been repurposed as a potential treatment for Covid 19. The current study has been carried out to understand the structural and chemical properties of this molecule. The molecule is optimized by using density functional theory (DFT) method. The DFT calculations are performed using Gaussian 09 W software package. The bond lengths and bond angles between atoms in the molecules are investigated. The intramolecular interaction within the molecule is identified using the natural bond orbital (NBO) study. The atom in molecule (AIM) study is performed using Multiwfn software. All the calculations are performed at B3LYP /6311G++ (d, p) level of theory. The molecular parameters, such as first-order hyperpolarizability, HOMO-LUMO energy gap, global electrophilicity index, dipole moment, chemical potential, hardness, ionization energy and electron affinity are determined from the calculation. The molecular docking analysis of Baricitinib is also carried out against different target proteins such as 6VSB, 6W9C and 6LU7.
Collapse
Affiliation(s)
- Chiging Sonia
- Department of Physics, NERIST, Arunachal Pradesh 791109, India,Corresponding author
| | - Th.Gomti Devi
- Department of Physics, NERIST, Arunachal Pradesh 791109, India,Department of Physics, Manipur University, Manipur 795003, India
| | - T. Karlo
- Department of Physics, NERIST, Arunachal Pradesh 791109, India
| |
Collapse
|