1
|
Wang YN, Xu H, Wang SD, Zhang MH, Wang YT, Qiu QC, Bai JT, Mo Y, Feng WY, Yang QF. Multifunctional Cd-CP for fluorescence sensing of Cr(VI), MnO 4-, acetylacetone and ascorbic acid in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122369. [PMID: 36657289 DOI: 10.1016/j.saa.2023.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The development of multifunctional fluorescent chemosensors for the detection of multiple targets remains challenging but of great importance. In this paper, one novel coordination polymer (CP), denoted as [Cd2(edda)(phen)2]∙H2O (compound 1, H4edda = 5,5' (ethane-1,2-diylbis(oxy)) diisophthalic acid, phen = 1,10-phenanthroline) is successfully designed and prepared under hydrothermal conditions. Structural analysis indicates that compound 1 possesses a one-dimensional (1D) double chain structure, then self-assembles into a three-dimensional (3D) supramolecular framework via π…π interactions between phen molecules. Interestingly, compound 1 is found to be tolerant in wide range of acidic to alkaline aqueous solutions (pH = 2-13). Fluorescent spectral investigations reveal that compound 1 exhibits highly selective and sensitive fluorescence responses toward MnO4-, Cr(VI) ions, acetylacetone (acac) and ascorbic acid (AA) by fluorescence quenching in the aqueous phase. The detection limits are in the very low range, reaching μM level for the detection of MnO4-, Cr(VI) ions, nM for AA and ppm for acac detection. The distinguished multi-responsive performance suggests compound 1 to be a potential multifunctional probe. Furthermore, the possible quenching mechanisms have also been systematically investigated in this work.
Collapse
Affiliation(s)
- Yan-Ning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Hao Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shao-Dan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Meng-Han Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yi-Tong Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qing-Chen Qiu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jun-Tai Bai
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yuan Mo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wu-Yi Feng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Wu C, Shen Q, Zheng S, Zhang X, Sheng J, Yang H. Fabrication of Bi2Sn2O7@MIL-100(Fe) composite photocatalyst with enhanced superoxide-radical-dominated photocatalytic activity for ciprofloxacin degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|