1
|
Merzouki O, Arrousse N, Ech-chihbi E, Alanazi AS, Mabrouk EH, Hefnawy M, El Moussaoui A, Touijer H, El Barnossi A, Taleb M. Environmentally Friendly Synthesis of New Mono- and Bis-Pyrazole Derivatives; In Vitro Antimicrobial, Antifungal, and Antioxidant Activity; and In Silico Studies: DFT, ADMETox, and Molecular Docking. Pharmaceuticals (Basel) 2025; 18:167. [PMID: 40005981 PMCID: PMC11858278 DOI: 10.3390/ph18020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance and oxidative stress are major global health challenges, necessitating the development of novel therapeutic agents. Pyrazole derivatives, known for their diverse pharmacological properties, hold promise in addressing these issues. This study aimed to synthesize new mono- and bis-pyrazole derivatives using an eco-friendly, catalyst-free approach and evaluate their antioxidant, antibacterial, and antifungal activities, supported by in silico ADMET profiling, molecular docking, and Density Functional Theory (DFT) analysis. Methods: The compounds were synthesized via a green condensation reaction and characterized using NMR and mass spectrometry, which was verified by DFT analysis. Biological activities were assessed through DPPH and FRAP antioxidant assays, as well as disk diffusion and MIC methods, against bacterial strains (Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli) and fungal strains (Candida albicans and Aspergillus niger). Computational ADMET profiling evaluated pharmacokinetics and toxicity, while molecular docking assessed interactions with target proteins, including catalase, topoisomerase IV, and CYP51. Results: Theoretical calculations using DFT were in agreement with the experimental results; regarding biological activities, O4 demonstrated the most significant antioxidant activity, with 80.14% DPPH radical scavenging and an IC50 value of 40.91 µg/mL. It exhibited potent antimicrobial activity, surpassing Streptomycin with a 30 mm inhibition zone against Pseudomonas aeruginosa and showing strong efficacy against Staphylococcus aureus and Candida albicans. Computational studies confirmed favorable pharmacokinetic properties, no AMES toxicity, and strong binding affinities. DFT analysis revealed O4's stability and reactivity, further validating its potential as a therapeutic candidate. Conclusions: This study identified and characterized novel pyrazole derivatives with promising biological and pharmacological properties. O4 emerged as the most potent compound, demonstrating strong antioxidant and antimicrobial activities alongside favorable computational profiles. These findings highlight the potential of the synthetized compounds for therapeutic development and underscore the value of integrating green synthesis with computational techniques in drug discovery.
Collapse
Affiliation(s)
- Oussama Merzouki
- Laboratory of Engineering Electrochemistry, Modeling, and Environment, Department of Chemistry, Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Nadia Arrousse
- School of Science and Engineering, Al Akhawayn University in Ifrane, Hassan II Avenue, Ifrane 53000, Morocco
| | - Elhachmia Ech-chihbi
- Laboratory of Physics and Chemistry of Inorganic and Organic Materials, Higher Normal School, Mohammed V University, Rabat 30050, Morocco
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - El Houssine Mabrouk
- Laboratory of Engineering Electrochemistry, Modeling, and Environment, Department of Chemistry, Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Technics, University of Moulay Ismail, Meknes, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Mohamed Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelfattah El Moussaoui
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Hanane Touijer
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering Electrochemistry, Modeling, and Environment, Department of Chemistry, Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
2
|
Dadou S, Altay A, Baydere C, Anouar EH, Türkmenoğlu B, Koudad M, Dege N, Oussaid A, Benchat N, Karrouchi K. Chalcone-based imidazo[2,1- b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies. J Biomol Struct Dyn 2025; 43:261-276. [PMID: 38009853 DOI: 10.1080/07391102.2023.2280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
In this work, two novel chalcone-based imidazothiazole derivatives ITC-1 and ITC-2 were synthesized and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry with electrospray ionization, and chemical structure of ITC-1 was confirmed by single-crystal X-ray diffraction. Also, the anticancer activity of ITC-1 and ITC-2 was evaluated. First, antiproliferative activity tests were performed against cancer cells namely, human-derived breast adenocarcinoma (MCF-7), lung carcinoma (A-549), and colorectal adenocarcinoma (HT-29) cell lines, and mouse fibroblast healthy cell line (3T3-L1) by XTT assay. Afterward, mitochondrial membrane disruption (MMP), caspase activity, and apoptosis tests were performed on MCF-7 cells to elucidate the anticancer mechanism of action of the test compounds by flow cytometry analysis. XTT results revealed that both compounds exhibited a very high degree of antiproliferative effects on each tested cancer cell line with very low IC50 values while showing much lower antiproliferation on 3T3-L1 normal cells with much higher IC50 values. Besides, ITC-2 was determined to have a striking cytotoxic power competing with the chemotherapeutic drug carboplatin. Flow cytometry results demonstrated the mitochondrial-mediated apoptotic effects of both compounds through membrane disruption and multi-caspase activation in MCF-7 cells. Finally, molecular docking studies were performed to determine the structural understanding of the test compounds by their interactions on caspase-3 and DNA dodecamer enzymes, respectively. The interactions between the compound and the crystal structure were determined according to parameters such as free binding energies (ΔGBind), Glide score values, and determination of the active binding site. The obtained data suggest that ITC-1 and ITC-2 may be considered remarkable anticancer drug candidates. In addition to molecular docking via in silico approaches, the pharmacokinetic properties of compounds ITC-1 and ITC-2 were calculated using the Schrödinger 2021-2 Qikprop wizard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Said Dadou
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cemile Baydere
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mohammed Koudad
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdelouahad Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Gupta T, Rani D, Nainwal LM, Badhwar R. Advancement in chiral heterocycles for the antidiabetic activity. Chirality 2024; 36:e23637. [PMID: 38384150 DOI: 10.1002/chir.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024]
Abstract
For the synthesis and development of pharmaceuticals, chirality is an important structural component. Chiral heterocyclic compounds have annoyed the interest of synthetic chemists who are working to create useful and efficient techniques for these molecules. As indicated by the expanding number of chiral drugs created in the last two decades, the link between chirality and pharmacological activity has become more important in the pharmaceutical and biopharmaceutical industries. Approximately 65% of currently used drugs are chiral, and many of them are promoted as racemates in many circumstances. There are a growing number of new chiral heterocyclic compounds with important biological properties and intriguing uses in medical chemistry and drug discovery. In this study, we review current breakthroughs in chiral heterocycles and their different physiological activities that have been published in the last year (from 2010 to early 2023). This study focuses on the current trends in the use of chiral heterocycles in drug design and the creation of several powerful and competent candidates for diabetic illnesses.
Collapse
Affiliation(s)
- Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Dimpy Rani
- School of Medical and Allied Sciences, G.D. Goenka University, Haryana, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Reena Badhwar
- Department of Pharmacy, SGT University, Budhera, Haryana, India
| |
Collapse
|
4
|
Ait Lahcen M, Adardour M, Mortada S, Oubahmane M, Hmaimou S, Loughzail M, Hdoufane I, Lahmidi S, Faouzi MEA, Cherqaoui D, Mague JT, Baouid A. Synthesis, characterization, X-ray, α-glucosidase inhibition and molecular docking study of new triazolic systems based on 1,5-benzodiazepine via 1,3-dipolar cycloaddition reactions. J Biomol Struct Dyn 2024; 42:1985-1998. [PMID: 37098807 DOI: 10.1080/07391102.2023.2203263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023]
Abstract
We report in this work a synthesis of novel triazolo[1,5]benzodiazepine derivatives by the 1,3-dipolar cycloaddition reaction of N-aryl-C-ethoxycarbonylnitrilimines with 1,5-benzodiazepines. All the structures of the new compounds were determined from their NMR (1H and 13C) and HRMS. Then, X-ray crystallography analysis of compound 4d confirmed the stereochemistry of cycloadducts. The compounds 1, 4a-d, 5a-d, 6c, 7 and 8 were evaluated for their in vitro anti-diabetic activity against α-glucosidase. The compounds 1, 4d, 5a and 5b showed potential inhibitory activities compared to standard acarbose. Additionally, an in silico docking study was conducted to look into the active binding mode of the synthesized compounds within the target enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mehdi Oubahmane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Samir Hmaimou
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Loughzail
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Ismail Hdoufane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Sanae Lahmidi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Driss Cherqaoui
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
5
|
Fettach S, Thari FZ, Hafidi Z, Karrouchi K, Bouathmany K, Cherrah Y, El Achouri M, Benbacer L, El Mzibri M, Sefrioui H, Bougrin K, Faouzi MEA. Biological, toxicological and molecular docking evaluations of isoxazoline-thiazolidine-2,4-dione analogues as new class of anti-hyperglycemic agents. J Biomol Struct Dyn 2023; 41:1072-1084. [PMID: 34957934 DOI: 10.1080/07391102.2021.2017348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, three isoxazoline-thiazolidine-2,4-dione derivatives were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and ESI-MS spectrometry. All compounds have been investigated for their α-amylase and α-glucosidase inhibitory activities. In vitro enzymatic evaluation revealed that all compounds were inhibitory potent against α-glucosidase with IC50 values varied from 40.67 ± 1.81 to 92.54 ± 0.43 µM, and α-amylase with IC50 in the range of 07.01 ± 0.02 to 75.10 ± 1.06 µM. One of the tested compounds were found to be more potent inhibitor compared to other compounds and standard drug Acarbose (IC50 glucosidase= 97.12 ± 0.35 µM and IC50 amylase= 2.97 ± 0.01 μM). All compounds were then evaluated for their acute toxicity in vivo and shown their safety at a high dose with LD > 2000mg/kg BW. A cell-based toxicity evaluation was performed to determine the safety of compounds on liver cells, using the MTT assay against HepG2 cells, and the results shown that all compounds have non-toxic impact against cell viability and proliferation compared to reference drug (Pioglitazone). Furthermore, the molecular homology analysis, SAR and the molecular binding properties of compound with the active site of α-amylase and α-glucosidase were confirmed through computational analysis. This study has identified the inhibitory potential of a new class of synthesized isoxazoline-thiazolidine-2,4-dione derivatives in controlling both hyperglycemia and type 2 diabetes mellitus without any hepatic toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, IQAC-CSIC, c/Jordi Girona, Barcelona, Spain
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Kaoutar Bouathmany
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed El Achouri
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure-Rabat, Mohammed V University, Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Mohammed El Mzibri
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Hassan Sefrioui
- Moroccan Foundation for Science, Innovation & Research (MAScIR), Centre de Biotechnologie Médicale, Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Rabat, Morocco.,Chemical and Biochemical Sciences Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
6
|
Shi HB, Zhai ZW, Min LJ, Han L, Sun NB, Cantrell CL, Bajsa-Hirschel J, Duke SO, Liu XH. Synthesis and pesticidal activity of new 1,3,4-oxadiazole thioether compounds containing a trifluoromethylpyrazoyl moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [PMCID: PMC9486790 DOI: 10.1007/s11164-022-04839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In order to find new lead compounds with high pesticidal activity, a series of 1,3,4-oxadiazole thioether compounds (5 series) were designed by using penthiopyrad as a synthon. They were synthesized easily via five steps by using ethyl 4,4,4-trifluoro-3-oxobutanoate and triethyl orthoformate as starting materials. The synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS. The compound 2-(benzylthio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5a) was further determined by X-ray single-crystal diffraction. It crystallized in the monoclinic system, space group P21/c, Z = 4. All the 1,3,4-oxadiazole thioether derivatives were screened for fungicidal activity against ten fungi and herbicidal activity against two weeds. The bioassay results indicated that some of the synthesized 1,3,4-oxadiazole compounds exhibited good fungicidal activity (> 50% inhibition) against the plant pathogens Sclerotinia sclerotiorum and Rhizoctonia solani at 50 μg/mL. Some of them exhibited certain herbicidal activity, and compounds 2-((3-chlorobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5e) and 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) had bleach effect. Molecular docking is to find the best fit orientation of the 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) molecule with the SDH protein (PDB: 2FBW). The docking results indicate that the compound 5 g and the lead compound penthiopyrad have similar binding interactions with SDH and carbonyl is a key group for these compounds.
Collapse
Affiliation(s)
- Hai-Bo Shi
- Chemical Engineering College, Ningbo Polytechnic, Ningbo, 315800 China
| | - Zhi-Wen Zhai
- College of Life Science, Huzhou University, Huzhou, 313000 China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Li-Jing Min
- College of Life Science, Huzhou University, Huzhou, 313000 China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, USDA ARS, University, MS 38677 USA
| | | | - Stephen O. Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677 USA
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
7
|
Karrouchi K, Sert Y, Ansar M, Radi S, El Bali B, Imad R, Alam A, Irshad R, Wajid S, Altaf M. Synthesis, α-Glucosidase Inhibition, Anticancer, DFT and Molecular Docking Investigations of Pyrazole Hydrazone Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Faculty of Medicine and Pharmacy, Laboratory of Analytical Chemistry and Bromatology, Mohammed V University in Rabat, Rabat, Morocco
| | - Yusuf Sert
- Science and Art Faculty, Department of Physics, Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Smaail Radi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Department of Chemistry, University Mohammed Premier, Oujda, Morocco
| | - Brahim El Bali
- Laboratory of Organic, Macromolecular Chemistry and Natural Products, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Rehan Imad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Anum Alam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rimsha Irshad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sheeba Wajid
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| | - Muhammad Altaf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Karrouchi K, Fettach S, Anouar EH, Bayach I, Albalwi H, Arshad S, Sebbar NK, Tachalait H, Bougrin K, Faouzi MEA, Himmi B. Synthesis, Spectroscopic Characterization, DFT, Molecular Docking and Antidiabetic Activity of N-Isonicotinoyl Arylaldehyde Hydrazones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2028870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed University V in Rabat, Morocco
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Imene Bayach
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanan Albalwi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Suhana Arshad
- X-Ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia
| | - Nada Kheira Sebbar
- Laboratoire de Chimie Bioorganique Appliquée, Faculte ́Des Sciences, Universite ́IbnZohr, Agadir, Morocco
| | - Hamza Tachalait
- Equipe de Chimie Des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie Des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
- Chemical and Biochemical Sciences Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed University V in Rabat, Morocco
| | - Benacer Himmi
- Filière Techniques de Santé, Institut Supérieur Des Professions Infirmières et Techniques de Santé de Rabat, Ministère de la Santé, Morocco
| |
Collapse
|