1
|
Hsu CY, Hameed GF, Ahmad I, Kumar A, Ganesan S, Shankhyan A, Sunitha S, Panigrahi R. Nanomagnetic nickel complex based on salicylamide and l-proline ligands as an efficient heterogeneous catalyst for synthesis of tetrazoles. NANOSCALE ADVANCES 2025; 7:2663-2676. [PMID: 40144273 PMCID: PMC11933924 DOI: 10.1039/d5na00168d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
A novel salicylamide-l-proline-nickel(ii) complex, supported on magnetic iron oxide [Fe3O4@salicylamide-l-proline-Ni(ii)], was synthesized through a three-step procedure. This included the functionalization of Fe3O4 with amine groups using glycine as a linker, followed by direct amidation of salicylic acid and its subsequent coordination with Ni(ii) and l-proline as a co-ligand to form the nanomagnetic Ni(ii) complex. The resulting catalyst was comprehensively characterized by several techniques. The catalyst exhibited outstanding catalytic performance in the homoselective synthesis of 5-substituted-1H-tetrazoles from benzonitriles. Notably, it demonstrated excellent recyclability, maintaining high efficiency over eight reaction cycles. The use of a low-cost linker, ligand, and complex catalyst, combined with easy magnetic separation, minimal leaching, and scalability, renders this approach both environmentally sustainable and economically advantageous compared to traditional Ni-based methods.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus Phoenix Arizona 85004 USA
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin Ekaterinburg 620002 Russia
- Department of Technical Sciences, Western Caspian University Baku Azerbaijan
- Refrigeration & Air-condition Department, Technical Engineering College, The Islamic University Najaf Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura Punjab 140401 India
| | - S Sunitha
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha-751003 India
| |
Collapse
|
2
|
Mousavi H, Zeynizadeh B, Sepehraddin F. Green procedures for synthesizing potential hNMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic Fe 3O 4@APTMS@Cp 2ZrCl x (x = 0, 1, 2) nanocatalyst. NANOSCALE ADVANCES 2025; 7:2528-2553. [PMID: 40070439 PMCID: PMC11892742 DOI: 10.1039/d4na00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
The conversion of nitro(hetero)arenes to corresponding (hetero)aryl amines and other practical organic compounds plays a crucial role in various sciences, especially environmental remediation and public health. In the current research work, diverse green and efficient strategies for the convenient reduction (hydrogenation) and one-pot two-step reductive acetylation of nitro(hetero)arenes using a core-shell-type mesoporous zirconocene-containing magnetically recoverable nanocomposite (viz. Fe3O4@APTMS@Cp2ZrCl x (x = 0, 1, 2)) as a powerful nanocatalytic system have been developed. In the presented organic transformations, the superparamagnetic Fe3O4@APTMS@Cp2ZrCl x (x = 0, 1, 2) nanocomposite exhibited satisfactory turnover numbers (TONs) and turnover frequencies (TOFs), along with acceptable reusability. On the other hand, we investigated the potential biological effect of the synthesized (hetero)aryl amines and N-(hetero)aryl acetamides against the transmembrane domain (TMD) of the human N-methyl-d-aspartate (hNMDA) receptor based on molecular docking studies. Furthermore, the drug-likeness properties of our hit compound (viz. N-(3-(1-hydroxyethyl)phenyl)acetamide) have been scrutinized by in silico ADMET analyses.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Farhad Sepehraddin
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
3
|
Heidarnezhad Z, Ghorbani-Choghamarani A, Taherinia Z. Magnetically recoverable Fe 3O 4@SiO 2@SBA-3@2-ATP-Cu: an improved catalyst for the synthesis of 5-substituted 1 H-tetrazoles. NANOSCALE ADVANCES 2024; 6:4360-4368. [PMID: 39170982 PMCID: PMC11334987 DOI: 10.1039/d4na00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/06/2024] [Indexed: 08/23/2024]
Abstract
Functionalization of Fe3O4@SiO2@SBA-3 with double-charged 3-chloropropyltrimethoxysilane (CPTMS) and 2-aminophenol, followed by mechanical mixing of the solid product with copper(i) chloride produces a new, greener and efficient Fe3O4@SiO2@SBA-3@2-ATP-Cu catalyst for the synthesis of 5-substituted 1H-tetrazoles. XRD, SEM, atomic absorption, TGA, N2 adsorption-desorption, and VSM analyses were performed for the characterization of the Fe3O4@SiO2@SBA-3@2-ATP-Cu structure. Nitrogen adsorption-desorption analysis revealed that Fe3O4@SiO2@SBA-3@2-ATP-Cu has a surface area of 242 m2 g-1 and a total pore volume of 55.72 cm3 g-1. In synthesizing 5-substituted 1H-tetrazoles, Fe3O4@SiO2@SBA-3@2-ATP-Cu shows superior yields in short reaction times at 120 °C. This catalyst also showed high thermal stability and recyclability at least for 4 runs without apparent loss of efficiency.
Collapse
Affiliation(s)
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Ilam Iran
| |
Collapse
|
4
|
Heidarnezhad Z, Ghorbani-Choghamarani A, Taherinia Z. Fe 3O 4@SiO 2@SBA-3@CPTMS@Arg-Cu: preparation, characterization, and catalytic performance in the conversion of nitriles to amides and the synthesis of 5-substituted 1 H-tetrazoles. NANOSCALE ADVANCES 2024; 6:2431-2446. [PMID: 38694458 PMCID: PMC11059512 DOI: 10.1039/d3na00318c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/15/2023] [Indexed: 05/04/2024]
Abstract
A novel, efficient, and recyclable mesoporous Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu nanocatalyst was synthesized by grafting l-arginine (with the ability to coordinate with Cu) onto a mixed phase of a magnetic mesoporous SBA-3 support. The catalyst was characterized using several techniques, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), X-ray diffraction (XRD) analysis, N2 adsorption-desorption analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) analysis, and atomic absorption spectroscopy (AAS). The resulting solid material possessed a surface area of 145 m2 g-1 and a total pore volume of 34 cm3 g-1. The prepared mesoporous material was studied as a practical, recyclable, and chemoselective catalyst in some organic functional group transformations such as the conversion of nitriles to amides and synthesis of 5-substituted 1H-tetrazoles. This novel magnetic nanocatalyst proved to be effective and provided the products in high to excellent yields under green solvent conditions. Meanwhile, the as-prepared Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu demonstrated excellent reusability and stability under reaction conditions, and its catalytic activity shown only a slight decrease after seven consecutive runs. Therefore, the as-synthesized magnetic Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu has broad prospects for practical applications, and offers various benefits such as simplicity, nontoxicity, low cost, simple work-up, and an environmentally benign nature.
Collapse
Affiliation(s)
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Ilam Iran
| |
Collapse
|
5
|
Sun M, Liu W, Wu W, Li Q, Shen L. Fe 3O 4@ABA-aniline-CuI nanocomposite as a highly efficient and reusable nanocatalyst for the synthesis of benzothiazole-sulfide aryls and heteroaryls. RSC Adv 2023; 13:20351-20364. [PMID: 37448779 PMCID: PMC10337755 DOI: 10.1039/d3ra03069e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Studying diaryl sulfides and benzothiazoles is important in organic synthesis because numerous natural and medicinal products contain these scaffolds. Over the past few years, research on the synthesis of compounds containing benzothiazole-sulfide aryls, as important biological molecules, has received significant attention. Multicomponent reactions are the most popular strategy for performing difficult reactions and the synthesis of complexed molecules such as benzothiazole-sulfide aryls. In this work, CuI was successfully immobilized on the surface of magnetic Fe3O4 nanoparticles modified with aniline and 4-aminobenzoic acid [Fe3O4@ABA-Aniline-CuI nanocomposite] and its catalytic activity was investigated in the preparation of a broad range of benzothiazole-sulfide aryls and heteroaryls through the one-pot three-component reactions of 2-iodoaniline with carbon disulfide and aryl or heteroaryl iodides in the presence of KOAc as base in PEG-400 as solvent. TEM and SEM images revealed that the shape of the Fe3O4@ABA-Aniline-CuI particles is spherical and the size of the particles is approximately between 12-25 nanometers.
Collapse
Affiliation(s)
- Mingzhe Sun
- College of Food and Biology, Changchun Polytechnic Changchun Jilin 130033 China
| | - Wei Liu
- College of computer science, Jilin Normal University Siping Jilin 136000 China
| | - Wei Wu
- College of computer science, Jilin Normal University Siping Jilin 136000 China
| | - Qun Li
- College of Food and Biology, Changchun Polytechnic Changchun Jilin 130033 China
| | - Li Shen
- Institute Chemical and Nanotechnology Beijing China
| |
Collapse
|
6
|
Moradi P, Kikhavani T, Abbasi Tyula Y. A new samarium complex of 1,3-bis(pyridin-3-ylmethyl)thiourea on boehmite nanoparticles as a practical and recyclable nanocatalyst for the selective synthesis of tetrazoles. Sci Rep 2023; 13:5902. [PMID: 37041186 PMCID: PMC10090185 DOI: 10.1038/s41598-023-33109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Boehmite is a natural and environmentally friendly compound. Herein boehmite nanoparticles were primarily synthesized and, then, their surface were modified via 3-choloropropyltrimtoxysilane (CPTMS). Afterwards, a new samarium complex was stabilized on the surface of the modified boehmite nanoparticles (Sm-bis(PYT)@boehmite). The obtained nanoparticles were characterized using thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), wavelength dispersive X-ray spectroscopy (WDX), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and X-ray diffraction (XRD) pattern. Sm-bis(PYT)@boehmite was used as an environmentally friendly, efficient, and organic-inorganic hybrid nanocatalyst in the homoselective synthesis of tetrazoles in polyethylene glycol 400 (PEG-400) as a green solvent. Notably, Sm-bis(PYT)@boehmite is stable and has a heterogeneous nature. Thus, it can be reused for several runs without any re-activation.
Collapse
Affiliation(s)
- Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University, Ilam, Iran.
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran
| |
Collapse
|
7
|
Pirani F, Eshghi H, Rounaghi SA. Immobilized Cu(0) nanoparticles on montmorillonite-modified with benzalkonium chloride (MMT-BAC@Cu(0)): as an eco-friendly and proficient heterogeneous nano-catalyst for green synthesis of 5-substituted 1 H-tetrazoles. RSC Adv 2023; 13:6160-6170. [PMID: 36814874 PMCID: PMC9940308 DOI: 10.1039/d2ra08208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, Cu(0) nanoparticles supported on organo-modified montmorillonite with benzalkonium chloride (MMT-BAC@Cu(0)) were synthesized and used as an eco-friendly and green heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles in mild media. The structure of the catalyst was investigated using various techniques including XRD, EDX, ICP, TEM, FE-SEM, and FT-IR. The advantages of availability, low cost, non-toxicity, and biocompatibility of clay were our focus in synthesizing this nanoclay catalyst. The method's advantages include good to excellent product yields, mild conditions, easy work-up, short reaction times, and easy reuse of the nanocatalyst.
Collapse
Affiliation(s)
- Fatemeh Pirani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 91775-1436 Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 91775-1436 Iran
| | - S Amin Rounaghi
- Research and Development Laboratory, Nano Parmin Khavaran Company Birjand Iran
| |
Collapse
|
8
|
Karami M, Fathirad F. Cobalt ferrite nanoparticles anchored on reduced graphene oxide nanoribbons (0D/1D CoFe2O4/rGONRs) as an efficient catalyst for hydrogen generation via NaBH4 hydrolysis. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Movaheditabar P, Javaherian M, Nobakht V. Synthesis and Catalytic Application of MTsCOO‐Cu as a Melamine‐Based Metal‐Organic Framework in Facile Preparation of the 5‐Substituted‐1
H
‐Tetrazoles. ChemistrySelect 2022. [DOI: 10.1002/slct.202203667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Parviz Movaheditabar
- Department of Chemistry Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Mohammad Javaherian
- Department of Chemistry Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Valiollah Nobakht
- Department of Chemistry Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
10
|
Synthesis of CoFe2O4 @Amino glycol/Gd nanocomposite as a high-efficiency and reusable nanocatalyst for green oxidation of sulfides and synthesis of 5-substituted 1H-tetrazoles. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Galehban MH, Zeynizadeh B, Mousavi H. Introducing Fe3O4@SiO2@KCC-1@MPTMS@CuII catalytic applications for the green one-pot syntheses of 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones and 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Selective oxidation of sulfides and synthesis of 5-substituted 1H-tetrazoles on Ce (III) immobilized CoFe2O4 as a magnetically separable, highly active, and reusable nanocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04742-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|