Moreno-Suárez E, Avila-Acosta R, Sánchez-Ramírez K, Castillo JC, Macías MA. Crystallographic, spectroscopic and thermal studies of 1-(4-bromophenyl)-5-(2,5-dimethyl-1H-pyrrol-1-yl)-3-methyl-1H-pyrazole.
Acta Crystallogr C Struct Chem 2023;
79:472-479. [PMID:
37874208 DOI:
10.1107/s2053229623009221]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
The new title pyrrole-pyrazole derivative, C16H16BrN3, was synthesized through a citric acid-catalyzed Paal-Knorr reaction between acetonylacetone and 1-(4-bromophenyl)-3-methyl-1H-pyrazol-5-amine under mild reaction conditions. This synthetic protocol is noteworthy for its utilization of stoichiometric amounts of the reactants, an ecofriendly solvent and a cost-effective, non-toxic and biodegradable organocatalyst. A comprehensive understanding of the molecular structure was gained through spectroscopic, thermal and X-ray crystallographic analyses. The crystal structure is characterized by weak interactions, where only C-H...π connections contribute to the hydrogen-bond contacts. The supramolecular assembly is controlled by dispersion forces. However, the energy frameworks demonstrate that these forces act in three dimensions, providing enough stability, as observed in TGA-DSC (thermogravimetric analysis-differential scanning calorimetry) studies.
Collapse