1
|
Lee DE, Husain A, Khan A, Danish M, Jo WK. Versatile platform of 3D/2D/1D:ZnFe 2O 4/NiAl-LDH/MWCNTs nanocomposite for photocatalytic purification of dinoseb and electrocatalytic O 2 evolution reaction. ENVIRONMENTAL RESEARCH 2025; 264:120367. [PMID: 39549909 DOI: 10.1016/j.envres.2024.120367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Integrating photocatalysis with electrocatalysis may represent a synergistic approach to address environmental and energy challenges. In this context, we explored synthesizing a series of nanocomposite materials using a solid-state approach involving simple grinding and subsequent thermal treatment for the photocatalytic purification of dinoseb and electrocatalytic oxygen evolution (OER). Interestingly, among the series of synthesized materials, 40 wt percentage of 3D/2D/1D:ZnFe2O4/NiAl-LDH/MWCNTs ternary nanocomposite (40-NZM) showed highly improved dinoseb detoxification and OER efficiencies compared to those of pure materials. Importantly, approximately 98% detoxification of dinoseb was observed within 75 min of irradiation time under a visible light source. Remarkably, the 40-NZM nanocomposite exhibited the highest rate constant value (k = 4.1 × 10-2 min-1) with a favorable R2 (0.98) parameter. Furthermore, 40-NZM showed promising electrocatalytic OER performance, requiring only 217 mV of overpotential to achieve 10 mAcm-2 of current density with a smaller Tafel slope of 66.6 mVdec-1. Additionally, long-term stability was tested by recording 2000 cyclic voltammetry (CV) cycles. The results revealed that 40-NZM could maintain its catalytic activity for a longer duration as it required only 227 mV to attain 10 mAcm-2 even after 2000 CV cycles. Consequently, these outstanding characteristics of 40-NZM nanocomposite underscore the significant potential for catalytic water purification and sustainable energy conversion.
Collapse
Affiliation(s)
- Dong-Eun Lee
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ahmad Husain
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang, 43000, Selangor, Malaysia
| | - Azam Khan
- Department of Chemistry, Zakia Afaque Islamia College, Siwan, Jai Prakash University, Chapra, Bihar, India
| | - Mohtaram Danish
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Wan-Kuen Jo
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Darwish AS, Mahmoud SS, Bayaumy FE. Microwave-assisted hydrothermal fabrication of hierarchical-stacked mesoporous decavanadate-intercalated ZnAl nanolayered double hydroxide to exterminate different developmental stages of Trichinella spiralis and Schistosoma mansoniin-vitro. Heliyon 2023; 9:e18110. [PMID: 37483817 PMCID: PMC10362335 DOI: 10.1016/j.heliyon.2023.e18110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Hierarchically stacked mesoporous zinc-aluminium nanolayered-double-hydroxide intercalated with decavanadate (ZnAl-LDH-V10O28) is constructed using anion-exchange process via microwave-hydrothermal treatment. Physicochemical properties of ZnAl-LDH-V10O28 are characterized in detail. Decavanadate anions are intimately interacted with ZnAl-LDH nanosheets, generating highly ordered architecture of well-dimensioned stacking blocks of brucite-like nanolayers (∼8 nm). Such hierarchy improves surface-porosity and electrical-impedivity of ZnAl-LDH-V10O28 with declining its zeta-potential (ζav = 8.8 mV). In-vitro treatment of various developmental-stages of Trichinella spiralis and Schistosoma mansoni by ZnAl-LDH-V10O28 is recognized using parasitological and morphological (SEM/TEM) analyses. ZnAl-LDH-V10O28 exterminates muscle-larvae and adult-worms of Trichinella spiralis, and juvenile and adult Schistosoma mansoni, yielding near 100% mortality with rates achieving 5%/h within about 17 h of incubation. This parasiticidal behavior results from the symphony of biological activity gathering decavanadate and LDH-nanosheets. Indeed, ZnAl-LDH-V10O28 nanohybrid sample, as a promissory biocide for killing food-borne/waterborne parasites, becomes a futuristic research hotspot for studying its in-vivo bioactivity and impact-effectiveness on parasite molecular biology.
Collapse
Affiliation(s)
- Atef S. Darwish
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Soheir S. Mahmoud
- Schistosome Biological Materials Supply Program, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fatma E.A. Bayaumy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
5
|
Li C, Jing H, Wu Z, Jiang D. Layered Double Hydroxides for Photo(electro)catalytic Applications: A Mini Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3525. [PMID: 36234654 PMCID: PMC9565588 DOI: 10.3390/nano12193525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 05/16/2023]
Abstract
Chemical energy conversion strategies by photocatalysis and electrocatalysis are promising approaches to alleviating our energy shortages and environmental issues. Due to the 2D layer structure, adjustable composition, unique thermal decomposition and memory properties, abundant surface hydroxyl, and low cost, layered double hydroxides (LDHs) have attracted extensive attention in electrocatalysis, photocatalysis, and photoelectrocatalysis. This review summarizes the main structural characteristics of LDHs, including tunable composition, thermal decomposition and memory properties, delaminated layer, and surface hydroxyl. Next, the influences of the structural characteristics on the photo(electro)catalytic process are briefly introduced to understand the structure-performance correlations of LDHs materials. Recent progress and advances of LDHs in photocatalysis and photoelectrocatalysis applications are summarized. Finally, the challenges and future development of LDHs are prospected from the aspect of structural design and exploring structure-activity relationships in the photo(electro)catalysis applications.
Collapse
Affiliation(s)
- Cheng Li
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Huihua Jing
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410116, China
| | - Zhong Wu
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Denghui Jiang
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, China
- Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|