1
|
Abu-Izneid T, Rauf A, Ahmad Z, Wadood A, Ayub K, Muhammad N, Al-Awthan YS, Maqbool M, Bahattab OS, Hemeg HA, Naz S, Formanowicz D. Density functional theory (DFT), molecular docking, and xanthine oxidase inhibitory studies of dinaphthodiospyrol S from Diospyros kaki L. Saudi Pharm J 2024; 32:101936. [PMID: 38261938 PMCID: PMC10797153 DOI: 10.1016/j.jsps.2023.101936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
In this work, we investigated Diospyros kaki extract and an isolated compound for their potential as xanthine oxidase (XO) inhibitors, a target enzyme involved in inflammatory disorders. The prepared extract was subjected to column chromatography, and dinaphthodiospyrol S was isolated. Then XO inhibitory properties were assessed using a spectrophotometry microplate reader. DMSO was taken as a negative control, and allopurinol was used as a standard drug. The molecular docking study of the isolated compound to the XO active site was performed, followed by visualization and protein-ligand interaction. The defatted chloroform extract showed the highest inhibitory effect, followed by the chloroform extract and the isolated compound. The isolated compound exhibited significant inhibitory activity against XO with an IC50 value of 1.09 µM. Molecular docking studies showed that the compound strongly interacts with XO, forming hydrogen bond interactions with Arg149 and Cys113 and H-pi interactions with Cys116 and Leu147. The binding score of -7.678 kcal/mol further supported the potential of the isolated compound as an XO inhibitor. The quantum chemical procedures were used to study the electronic behavior of dinaphthodiospyrol S isolated from D. kaki. Frontier molecular orbital (FMO) analysis was performed to understand the distribution of electronic density, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, and energy gaps. The values of HOMO, LUMO, and energy gap were found to be -6.39, -3.51 and 2.88 eV respectively. The FMO results indicated the intramolecular charge transfer. Moreover, reactivity descriptors were also determined to confirm the stability of the compound. The molecular electrostatic potential (MEP) investigation was done to analyze the electrophilic and nucleophilic sites within a molecule. The oxygen atoms in the compound exhibited negative potential, indicating that they are favorable sites for electrophilic attacks. The results indicate its potential as a therapeutic agent for related disorders. Further studies are needed to investigate this compound's in vivo efficacy and safety as a potential drug candidate.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Ambar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan, University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan, University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Maria Maqbool
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Omar S. Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| | - Saima Naz
- Institute of Biotechnology & Microbiology, Bacha Khan University Charsadda, Khyber Pakhtunkhwa (K.P.), Pakistan
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Samreen HS, Hussain A, Yar M, Alshammari MB, Ayub K, Adeel M, Tariq M, Lateef M, Bakht MA, Rasool F. Photophysical and biological aspects of α, β-unsaturated ketones: Experimental and in silico approach. J Biochem Mol Toxicol 2023; 37:e23433. [PMID: 37394811 DOI: 10.1002/jbt.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
In this work, four fluorinated α, β-unsaturated ketones named as 3-(3-bromophenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (1), 3-(4-methoxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (2), 3-(3-bromo-5-chloro-2-hydroxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (3) and 3-(2-hydroxy-5-methylphenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (4) were synthesized by Claisen-Schmidt reaction. The synthesized molecules were then characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), 1 H-NMR, 13 C-NMR, and mass spectrometry. The antioxidant potential, Urease inhibition, and interaction of compounds 1-4 with Salmon sperm DNA were experimentally explored and supported by molecular docking studies. The synthesized compounds strongly interact with SS-DNA through intercalative mode. It was noticed that compound 1 served as potent Urease inhibitor while compound 4 as better antioxidant among synthesized compounds. Moreover, frontier molecular orbitals, nonlinear optical (NLO) properties, natural bond orbitals, molecular electrostatic potential, natural population analysis, and photophysical properties of synthesized compounds were accomplished through density functional theory and time-dependent density functional theory. The band gap of all the compounds have been worked out using Taucs method. In addition to that, a precise comparative account of UV and IR data obtained from theoretical and experimental findings showed good agreement between theoretical and experimental data. The findings of our studies reflected that compounds 1-4 possess better NLO properties than Urea standard and the band gap data also reflected their prospective use towards optoelectronic materials. The better NLO behavior of compounds was attributed to the noncentrosymmetric structure of synthesized compounds.
Collapse
Affiliation(s)
- Hafiza Saba Samreen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Yar
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammed Battah Alshammari
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdul Aziz university, Al-Kharj, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismaeel Khan, Pakistan
| | - Muhammad Tariq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Mehreen Lateef
- Multidisciplinary Research Laboratories, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Mohammed Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdul Aziz university, Al-Kharj, Saudi Arabia
| | - Faiz Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
3
|
Rasool F, Hussain A, Shamim Rizvi T, Yar M, Ayub K, Khalid M, Al-Harrasi A, Lateef M, Iqbal S. Combined experimental and computational approach toward biological, physicochemical and quantum chemical aspects of substituted 1-[5-Phenyl-3-(2-trifluoromethyl-phenyl)-4,5-dihydro-pyrazol-1-yl]-ethanone. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Synthesis, spectral characterization, DFT-computational analyses on Novel 4-nitrobenzenaminium benzenesulfonate (4NBASA) crystal. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Basri R, Ahmed N, Khalid M, Khan MU, Abdullah M, Syed A, Elgorban AM, Al-Rejaie SS, Braga AAC, Shafiq Z. Quinoline based thiosemicarbazones as colorimetric chemosensors for fluoride and cyanide ions and DFT studies. Sci Rep 2022; 12:4927. [PMID: 35322108 PMCID: PMC8943172 DOI: 10.1038/s41598-022-08860-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
High toxicity and extensive accessibility of fluoride and cyanide ions in diverse environmental media encouraged attention for scheming well-organized probes for their detection. Keeping in mind we have designed and synthesized thiosemicarbazone-based chemosensors RB-1, RB-2 and RB-3 for the detection of fluoride and cyanide ions. The structural elucidation of the synthesized chemosensors is done by employing different analytical techniques including nuclear magnetic resonance and electronic absorption specrtoscopies. Admirable detection limit, binding constant and fast response time (2 s) to F- and CN- ions enlarged the applications of these chemosensors. Additional confirmation of the sensing ability of these chemosensors is derived from DFT and TDDFT calculations with M06/6-311G(d,p) method by performing FMO, UV-Vis, QTAIM and global reactivity parameters elucidation. Overall results point out that investigated chemosensors are suitable candidates for sensing the F- ions. These chemosensors were successfully applied to detect F- ions in a commercial toothpaste sample.
Collapse
Affiliation(s)
- Rabia Basri
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Muhammad Abdullah
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|