1
|
Elangovan N, Arumugam N, Pennamuthiriyan A, Garg A, Sivaramakrishnan V, Kanchi S, Santhamoorthy M. The role of biochemical and biophysical properties, molecular docking and dynamics studies on azelastine. Biochem Biophys Res Commun 2025; 763:151781. [PMID: 40222330 DOI: 10.1016/j.bbrc.2025.151781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The structure of the 4-(4-chlorobenzyl)-2-(1-methylazepan-4-yl) phthalazin-1(2H)-one (IA) was optimized through computational study. The optimized structure revealed that the bond length between atoms C3 and C5 was the longest at 1.54 Å, while the bond between atoms C10 and H31 had the lowest length at about 1.01 Å, respectively. The natural bond orbital (NBO) analysis indicates that the bonding π(C3-C20) to anti-bonding π∗(N2-C3) interaction exhibits the most significant stabilization energy of about 253.59 kcal/mol. Due to the solvent's influence, the gas phase MEP value and HOMO-LUMO band gap value are lower, when compared to solvents. A localized bond pair that undergoes movement between two atoms, and a bond pair that undergoes movement between two different pairs of atoms are identified by electron localized function (ELF), localized orbital locator (LOL), and average localized ionization energy (ALIE) studies, respectively. The electron density and thermodynamic properties were determined using Gaussian software. This study examined various parameters such as non-linear optical (NLO), molecular electrostatic potential (MEP), UV-vis, and HOMO-LUMO in different solvents. Further, the biological activity of the IA compound was studied using molecular docking and dynamics on the target Mycobacterium tuberculosis ArgF (7NOR) protein, which showed favorable protein-ligand interaction energy.
Collapse
Affiliation(s)
- Natarajan Elangovan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Anandaraj Pennamuthiriyan
- Department of Chemistry, K. Ramakrishnan College of Engineering (Autonomous), Samayapuram, Tiruchirappalli, Tamilnadu, India
| | - Anuj Garg
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | | |
Collapse
|
2
|
Iqbal A, Abbas W, Ejaz S, Riaz N, Ashok AK, Hayat MM, Ashraf M. Multimodal evaluation of lipoxygenase-targeting NSAIDs using integrated in vitro, SAR, in silico, cytotoxicity towards MCF-7 cell line, DNA docking and MD simulation approaches. Int J Biol Macromol 2025:143665. [PMID: 40316117 DOI: 10.1016/j.ijbiomac.2025.143665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/12/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Lipoxygenase (LOX) and cyclooxygenase (COX) pathways generate biologically active mediators implicated in inflammatory disorders and several classes of cancer. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the COX pathway by inhibiting the COX-1 and COX-2 enzymes. We reported earlier that several NSAIDs, including naproxen, aspirin and acetaminophen, inhibited lipoxygenase (LOX) enzyme at sub-micromolar concentrations. In continuation, the present work demonstrates the anti-LOX activity of nine more NSAIDs supported by in vitro, in silico, MD simulation and breast cancer cell line studies. All tested drugs displayed potent to excellent inhibitory profiles with IC50 values <24.93 ± 0.64 μM. Aceclofenac (IC50 0.85 ± 0.06 μM) was the most active drug, followed by indomethacin (IC50 1.13 ± 0.07 μM), meloxicam (IC50 1.94 ± 0.07 μM) and ketorolac (IC50 9.26 ± 0.82 μM). Celecoxib (IC50 15.81 ± 0.71 μM), lornoxicam (IC50 16.54 ± 0.28 μM) and nimesulide (IC50 19.87 ± 0.85 μM) showed excellent inhibitory profiles. Flurbiprofen (IC50 21.73 ± 0.93 μM) and etoricoxib (IC50 24.93 ± 0.64 μM) moderately inhibited the target enzyme. SAR studies revealed that active molecules decorated with the carboxylate group afforded strong binding interactions as observed by in vitro assays and structural features. Other drugs, including enol derivatives and celecoxib, also showcased enhanced binding interactions. However, the cytotoxic effects of NSAIDs against the MCF-7 breast cancer cell line did not disclose significant anticancer activity. Molecular docking studies against human 5-LOX offered the best binding affinities for aceclofenac (-13.54 kcal/mol), accompanied by conventional hydrogen bonding and hydrophobic interactions as supported by the in vitro results. Docking studies with DNA dodecamer established minor groove binding with their possible role in DNA replication and gene expression. Density functional theory (DFT) and ESP studies, MD simulations and MMPBSA free energy calculations further reiterated the stability of ligand-receptor complexes. Overall, these findings highlight the potential of targeted NSAIDs as dual COX/LOX inhibitors with broader therapeutic relevance in inflammatory disorders.
Collapse
Affiliation(s)
- Ambar Iqbal
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Department of Biochemistry, Institute of Biochemistry, Biotechnology & Bioinformatics (IBBB), B.J. Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology & Bioinformatics (IBBB), B.J. Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Avinash Karkada Ashok
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103, India
| | | | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
3
|
Nunes JA, Santos-Júnior PFDS, Gomes MC, Ferreira LAS, Padilha EKA, Teixeira TR, Stanger EJ, Kaur Y, Silva EBD, Costa CACB, Freitas JDD, Araújo-Júnior JXD, Mendonça-Junior FJB, Giardini MA, Siqueira-Neto JL, Caffrey CR, Zhan P, Cardoso SH, Silva-Júnior EFD. Nanomolar activity of coumarin-3-thiosemicarbazones targeting Trypanosoma cruzi cruzain and the T. brucei cathepsin L-like protease. Eur J Med Chem 2025; 283:117109. [PMID: 39653622 DOI: 10.1016/j.ejmech.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) urgently demand innovative drug development due to their impact on public health worldwide. Their cysteine proteases, Cruzain (CRZ) and the T. brucei Cathepsin L-like protease (TbrCATL) are established drug targets for these parasites. In this study, our coumarin-3-thiosemicarbazones demonstrated nanomolar IC50 values (22-698 nM) toward these proteases. Against T. cruzi amastigotes and T. brucei trypomastigotes, LASF-01 displayed a promising result. Herein, MCG-02, the most potent TbrCATL inhibitor, underwent comprehensive analyses, including cytotoxicity assessments and in vitro tests. Molecular dynamics (MD) simulations and a multiscale Quantum Mechanics/Quantum Mechanics (QM/QM) approach were used to generate insights into their binding modes. These suggested that MCG-02 could be a reversible, competitive covalent inhibitor. Further, confirmatory assays were experimentally performed changing different parameters to prove its efficacy. Additionally, the predicted pharmacokinetic profile showed that there is no violation of the Lipinski rule of five. Notably, coumarin-3-thiosemicarbazone hybrids emerged as promising candidates for designing highly active inhibitors against CRZ and TbrCATL. Overall, the integration of in silico and experimental approaches enhanced our understanding regarding the binding modes of MCG-02, which were experimentally corroborated, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Jéssica Alves Nunes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Midiane Correa Gomes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Luiz Alberto Santos Ferreira
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca, 57309-005, Brazil
| | - Emanuelly Karla Araújo Padilha
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily J Stanger
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yashpreet Kaur
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Maceió, Alagoas, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | | | - Miriam A Giardini
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca, 57309-005, Brazil.
| | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil.
| |
Collapse
|
4
|
Iqbal A, Ashraf M, Ashok AK, Kaouche FC, Bashir B, Qadir A, Riaz N. Exploration of 4-tolyl-5-(p-tolyloxymethyl)-4H-1,2,4-triazole thioethers as potent 15-LOX inhibitors supported by in vitro, in silico, MD simulation and DNA binding studies. J Mol Struct 2025; 1321:139963. [DOI: 10.1016/j.molstruc.2024.139963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Zhang B, Wu JD, Wang Q, Wang SY, Zhou PP, Han LT. Exploring the relationship between metal ion valency and electron transfer in copigmentation processes of cyanidin-3- O-glucoside in simulated fruit wine solutions. Curr Res Food Sci 2024; 9:100849. [PMID: 39319110 PMCID: PMC11421370 DOI: 10.1016/j.crfs.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
In this experiment, five metal ions (K+, Mg2+, Al3+, Ga3+, and Sn4+) were utilized as copigments to investigate their copigmentation processes with cyanidin-3-O-glucoside (C3OG) in simulated fruit wine solutions. The color characteristics were analyzed using Glories and CIELAB methods, and the copigmentation effects were determined spectrophotometrically. Thermodynamic parameters, including the equilibrium constant (K) and standard Gibbs free energy (ΔG°), were calculated to comprehend the binding affinity between metal ions and C3OG. Ultra-fast femtosecond spectroscopy was employed to monitor the photoinduced electron transfer process between C3OG and cations. Theoretical calculations were also conducted to support experimental findings. The results revealed that the presence of metal ions significantly enhanced the color intensity of C3OG in simulated fruit wine solutions. Higher valency cations, particularly Sn4+, Ga3+, and Al3+, exhibited superior copigmentation effects, resulting in significant bathochromic and hyperchromic changes. Thermodynamic analysis confirmed that the interaction between C3OG and metal ions was spontaneous and exothermic. Ultra-fast femtosecond spectroscopy demonstrated that electron transfer from C3OG to metal ions occurred, with the efficiency of transfer being dependent on valency. Theoretical calculations corroborated the experimental results by highlighting the role of metal ions in stabilizing C3OG/metal complexes through electron transfer. The findings presented in this study contribute to a more comprehensive understanding of pigment/metal complexes and the underlying chemistry behind fruit wine color. Furthermore, it advances the theoretical foundation of copigmentation and broadens its applications in the beverage industry.
Collapse
Affiliation(s)
- Bo Zhang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan-Di Wu
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shu-Yan Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pan-Pan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Ting Han
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Yadav P, Fatimah N, Sahoo SC, Kumari S, Berry S, Reenu, Kumar Pinnaka A, Bhalla A. Design, Synthesis and Biological Evaluation of C3‐Indolyl/(3‐chloro‐indolyl)‐ C4‐aryl/heteroaryl‐azetidin‐2‐ones. ChemMedChem 2024; 19. [DOI: 10.1002/cmdc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 01/04/2025]
Abstract
AbstractHerein, trans‐ and cis‐azetidin‐2‐ones 3–6 were strategically synthesized, capitalizing on the bioactivity of azetidin‐2‐ones and indole pharmacophore, followed by a comprehensive characterization using a diverse array of spectroscopic techniques. The sixteen azetidin‐2‐ones were examined for antimicrobial activities against both Gram‐negative (P. aeruginosa, E. coli, A. baumannii) and Gram‐positive bacteria (S. aureus, E. faecium, B. cereus), as well as against C. albicans and C. tropicalis fungal strains. The highly potent compounds (5 a, 6 b, 6 d) demonstrated maximum inhibition against all multidrug‐resistant strains, with minimum inhibitory concentrations ranging from 0.97–3.9 μg/mL, surpassing the potency of standard ampicillin (MIC: 3.12–50 μg/mL). Moreover, 6 b and 6 d exhibited significant inhibitory effects on C. albicans (MIC: 0.97 μg/mL), comparable to fluconazole. The presence of C3‐(3‐chloro‐indolyl) scaffold, combined with diverse electronic effects at N1/C4‐centers, particularly the inclusion of thiophen‐2‐yl motif, greatly influenced the activity of target compounds. Assessment of 4 d, 4 i–k and 6 d on THLE‐2 cell lines revealed their preferential safety. Molecular docking studies revealed seven compounds with active dual targeting of DNA GyrB and PBP2a proteins, demonstrating a potent broad‐spectrum antibacterial effect. In silico ADME analysis affirms positive drug‐likeness and favorable pharmacokinetic characteristics of indole‐derived hybrids, indicating a promising potential for addressing challenges in evolving multidrug resistance.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Nasreen Fatimah
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - S. C. Sahoo
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank CSIR-Microbial Type Culture Collection and Gene Bank Chandigarh 160036 India
| | - Shiwani Berry
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
- Department of Chemistry and Chemical Sciences Central University of Himachal Pradesh Shahpur Kangra 176206 India
| | - Reenu
- Department of Chemistry Govt. Home Science College Chandigarh 160011 India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank CSIR-Microbial Type Culture Collection and Gene Bank Chandigarh 160036 India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
7
|
Kiruthika M, Raveena R, Yogeswaran R, Elangovan N, Arumugam N, Padmanaban R, Djearamane S, Wong LS, Kayarohanam S. Spectroscopic characterization, DFT, antimicrobial activity and molecular docking studies on 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole. Heliyon 2024; 10:e29566. [PMID: 38707390 PMCID: PMC11066587 DOI: 10.1016/j.heliyon.2024.e29566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
The newly synthesized imidazole derivative namely, 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole (KA1), was studied for its molecular geometry, docking studies, spectral analysis and density functional theory (DFT) studies. Experimental vibrational frequencies were compared with scaled ones. The reactivity sites were determined using average localized ionization analysis (ALIE), electron localized function (ELF), localized orbital locator (LOL), reduced density gradient (RDG), Fukui functions and frontier molecular orbital (FMO). Due to the solvent effect, a lower gas phase energy gap was observed. Through utilization of the noncovalent interaction (NCI) method, the hydrogen bond interaction, steric effect and Vander Walls interaction were investigated. Molecular docking simulations were employed to determine the specific atom inside the molecules that exhibits a preference for binding with protein. The parameters for the molecular electrostatic potential (MESP) and global reactivity descriptors were also determined. The thermodynamic characteristics were determined through calculations employing the B3LYP/cc-pVDZ basis set. Antimicrobial activity was carried out using the five different microorganisms like Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Candida albicans.
Collapse
Affiliation(s)
- M. Kiruthika
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - R. Raveena
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - R. Yogeswaran
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Musiri, Anjalam, 621208, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - R. Padmanaban
- Department of Chemistry, School of Physical, Chemical & Applied Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
8
|
Nayak M, Patel CB, Mishra A, Singh R, Singh RK. Unveiling the Influence of Glutathione in Suppressing the Conversion of Aspirin to Salicylic Acid: A Fluorescence and DFT Study. J Fluoresc 2024; 34:1441-1451. [PMID: 38530561 DOI: 10.1007/s10895-024-03665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye's syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV-Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.
Collapse
Affiliation(s)
- Monalisha Nayak
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chandan Bhai Patel
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Mishra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ranjana Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Government Polytecnic Rajgrah, Mirzapur, Bathua, 231001, India.
| | - Ranjan K Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Elangovan N, Arumugam N, Almansour AI, Mathew S, Djearamane S, Wong LS, Kayarohanam S. Synthesis, solvent role, absorption and emission studies of cytosine derivative. Heliyon 2024; 10:e28623. [PMID: 38590870 PMCID: PMC11000011 DOI: 10.1016/j.heliyon.2024.e28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino) pyrimidin-2(1H)-one (C5NV) was synthesized from cytosine and 5-nitrovanilline by simple straightforward condensation reaction. The structural characteristics of the compound was determined and optimized by WB97XD/cc-pVDZ basis set. The vibrational frequencies were computed and subsequently compared to the experimental frequencies. We investiated the electronic properties of the synthesized compound in gas and solvent phases using the time-dependent density functional theory (TD-DFT) approach, and compared them to experimental values. The fluorescence study showed three different wavelengths indicating the nature of the optical material properties. Frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) analyses were conducted for the title compound, and electron localized functions (ELF) and localized orbital locators (LOL) were used to identify the orbital positions of localized and delocalized atoms. Non-covalent interactions (H-bond interactions) were investigated using reduced density gradients (RDGs). The objective of the study was to determine the physical, chemical, and biological properties of the C5NV. The molecular docking study was conducted between C5NV and 2XNF protein, its lowest binding energy score is -7.92 kcal/mol.
Collapse
Affiliation(s)
- N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Anjalam, 621208, Musiri, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shanty Mathew
- Department of Chemistry, St. Joseph's College Research Center, Shanthinagar, 560027, Bangalore, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
10
|
Miranda TG, Ciribelli NN, Bihain MFR, Santos Pereira AKD, Cavallini GS, Pereira DH. Interactions between DNA and the acridine intercalator: A computational study. Comput Biol Chem 2024; 109:108029. [PMID: 38387123 DOI: 10.1016/j.compbiolchem.2024.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Å to 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.
Collapse
Affiliation(s)
- Thaynara Guimarães Miranda
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | - Nicolas Nascimento Ciribelli
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | | | - Anna Karla Dos Santos Pereira
- Programa de Pós Graduação em Química, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós Graduação em Química, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | - Douglas Henrique Pereira
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil; Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos SP CEP 12228-900, Brazil.
| |
Collapse
|
11
|
Wang L, Guo R, Liang X, Ji Y, Zhang J, Gai G, Guo Z. Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups. Mar Drugs 2023; 21:606. [PMID: 38132927 PMCID: PMC10745101 DOI: 10.3390/md21120606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 μg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Liang
- School of Basic Sciences for Aviation Naval Aviation University, Yantai 264001, China;
| | - Yuting Ji
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Guowei Gai
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China;
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Cui Y, Sun Y, Yu H, Guo Y, Yao W, Xie Y, Yang F. Exploring the binding mechanism and adverse toxic effects of degradation metabolites of pyrethroid insecticides to human serum albumin: Multi-spectroscopy, calorimetric and molecular docking approaches. Food Chem Toxicol 2023; 179:113951. [PMID: 37479174 DOI: 10.1016/j.fct.2023.113951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Pyrethroid insecticides (PIs), a class of structurally similar non-persistent organic pollutants, can be degraded and metabolized to more toxic, and longer half-life products. In this study, the binding interaction mechanisms between human serum albumin (HSA) and the main degradation metabolites of PIs, 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), were studied by theoretical simulation and experimental verification. Steady state fluorescence spectra showed that the fluorescence quenching mechanism was static. According to the binding constant, 4-F-3-PBA (1.53 × 105 L mol-1) was bound more strongly to HSA than 3-PBA (1.42 × 105 L mol-1) in subdomain ⅡA (site I). It was found by isothermal titration calorimetry that the metabolites and HSA spontaneously combined mainly through hydrogen bond and van der Waals interaction. Ultraviolet absorption spectra and circular dichroism spectra showed that the metabolites caused slight changes in the microenvironment and conformation of HSA. The above results were proved by molecular docking. The toxicity properties of the metabolites were further analyzed by software, and 4-F-3-PBA was found to be more toxic than 3-PBA. Considering the high exposure level of these metabolites in food, the environment and human body, it is necessary to further explore the toxicity of PIs metabolites.
Collapse
Affiliation(s)
- Yiwen Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| | - Fangwei Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food and Health, Beijing Technology & Business University (BTBU), 33 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
13
|
M JP, Dhas DA, Joe IH, Balachandran S. Structural, Spectroscopic, Quantum Chemical, RDG, AIM, ELF, Fukui, O–H…N Hydrogen Bonding and NLO Activity of 2-Hydroxy-2-Phenyl Acetophenone Oxime: Experimental and Theoretical Approach. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jini Pramila M
- Department of Physics, Manonmanium Sundaranar University, Abishekapatti, India
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, India
| | - D. Arul Dhas
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, India
| | - I. Hubert Joe
- Department of Physics, Centre for Molecular and Biophysics Research, Mar Ivanios College, Thiruvananthapuram, India
| | | |
Collapse
|
14
|
Kadela-Tomanek M, Jastrzębska M, Chrobak E, Bębenek E. Lipophilicity and ADMET Analysis of Quinoline-1,4-quinone Hybrids. Pharmaceutics 2022; 15:pharmaceutics15010034. [PMID: 36678664 PMCID: PMC9867208 DOI: 10.3390/pharmaceutics15010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Lipophilicity is one of the basic properties of a potential drug determining its solubility in non-polar solvents and, consequently, its ability to passively penetrate the cell membrane, as well as the occurrence of various pharmacokinetic processes, including adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Heterocyclic compounds containing a nitrogen atom play a significant role in the search for new drugs. In this study, lipophilicity as well as other physicochemical, pharmacokinetic and toxicity properties affecting the bioavailability of the quinolone-1,4-quinone hybrids are presented. Lipophilicity was determined experimentally as well as theoretically using various computer programs. The tested compounds showed low values of experimental lipophilicity and its relationship with the type of 1,4-quinone moiety. Introduction of the nitrogen atom reduced the lipophilicity depending on the position at the 5,8-quinolinedione moiety. The bioavailability of the tested compounds was determined in silico using the ADMET parameters. The obtained parameters showed that most of the hybrids can be used orally and do not exhibit neurotoxic effects. Similarity analysis was used to examine the relationship between the ADMET parameters and experimental lipophilicity. The ability of hybrids to interact with biological targets was characterized by global reactivity descriptors. The molecular docking study showed that the hybrids can inhibit the BCL-2 protein.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
- Correspondence: ; Tel.: +48-32-3641666
| | - Maria Jastrzębska
- Silesian Center for Education and Interdisciplinary Research, Institute of Physics, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
15
|
Deng Q, Jiang L, Yu Y, Yang Y. Theoretical exploration of the mechanism of α-pinene hydrogenation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Femi-Frederic N, Arul-Dhas D, Hubert-Joe I, Gunasekaran B, Sindhusha S, Vinitha G. Synthesis, structure, spectroscopic, topological analysis of novel intermolecular N-H…N and N-H…O hydrogen bonded NLO active melaminium cyanoacetate single crystal: Experimental and Theoretical approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Wang L, Liu X, Tan W, Li Q, Guo Z, Zhang J. Preparation and antioxidant activity of novel chitosan oligosaccharide quinolinyl urea derivatives. Carbohydr Res 2022; 521:108678. [PMID: 36116378 DOI: 10.1016/j.carres.2022.108678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022]
Abstract
In the present study, four new chitosan oligosaccharide derivatives bearing quinolinyl urea groups were synthesized by reaction between 2-methoxyformylated chitosan oligosaccharide and aminoquinoline. The chitosan oligosaccharide derivatives were characterized by Fourier Transform Infrared (FTIR) and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The obtained results confirmed that chitosan oligosaccharide quinolinyl urea derivatives were successfully synthesized. Meanwhile, the antioxidant activities of different chitosan oligosaccharide derivatives were examined in vitro. Experimentally, it was demonstrated that chitosan oligosaccharide quinolinyl urea derivatives had superior antioxidant activity compared with chitosan oligosaccharide and the antioxidant effects were concentration-dependent. Especially, when the concentration was 1.6 mg/mL, their superoxide anion radical scavenging rates could reach to 72.35 ± 0.49%, 100.00 ± 0.21%, 84.63 ± 0.49%, and 87.22 ± 0.32%, respectively. And the hydroxyl radical scavenging rates could reach to 100.00 ± 0.82%, 98.49 ± 4.08%, 100.00 ± 5.76%, and 92.07 ± 5.10%. In addition, the cytotoxic activity of the prepared chitosan derivatives against L929 cells was determined by CCK-8 assay. The cell survival rates were all higher than 90%, which intuitively indicated that the samples had almost no cytotoxicity. The findings indicated that the enhanced antioxidant property and biocompatibility of these chitosan oligosaccharide quinolinyl urea derivatives could enlarge the scope of the application of chitosan oligosaccharide, particularly as an antioxidant in food packaging, biomedical, pharmaceutical, cosmetics industries and other fields.
Collapse
Affiliation(s)
- Linqing Wang
- School of Chemical and Materials Science, Ludong University, Yantai, 264025, China
| | - Xiguang Liu
- School of Chemical and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
18
|
How formaldehyde affects the thermo-oxidative and photo-oxidative mechanism of polypropylene: A DFT/TD-DFT study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Steffy AD, Arul Dhas D, Hubert Joe I. Nonlinear optical activity of piperazine-1,4-diium bis(sulfanilate) compound. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Priya M, Zochedh A, Arumugam K, Sultan AB. Quantum Chemical Investigation, Drug-Likeness and Molecular Docking Studies on Galangin as Alpha-Synuclein Regulator for the Treatment of Parkinson’s Disease. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Rajesh R, Muthu S, Sheela N. Investigations of 6-Fluoro-4-Oxo-3,4-Dihydro-2H-Chromene-2-Carboxylic Acid by Quantum Computational, Spectroscopic, TD-DFT with Various Solvents and Molecular Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2124284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- R. Rajesh
- Department of Physics, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College (Autonomous), Chennai, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, India
| | - N.R. Sheela
- Department of Applied Physics, Sri Venkateswara College of Engineering (Autonomous), Chennai, India
| |
Collapse
|
22
|
Zazouli S, Chigr M, Atmani H, Jouaiti A. Synthesis, spectroscopic characterization of new series of alizarin derivatives and their anti-microbial activities: DFT and molecular docking approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|