1
|
Islam WU, Khan A, Khan F, Ullah S, Waqas M, Khan H, Khan M, Rahman SM, Ali S, Mateen A, Khalid A, Khan A, Al-Harrasi A. Synthesis of novel hydrazide Schiff bases with anti-diabetic and anti-hyperlipidemic effects: in-vitro, in-vivo and in-silico approaches. J Biomol Struct Dyn 2024:1-12. [PMID: 38533896 DOI: 10.1080/07391102.2024.2329296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
The increasing global incidence of non-insulin-dependent diabetes mellitus (NIDDM) necessitates innovative therapeutic solutions. This study focuses on the design, synthesis and biological evaluation of Schiff base derivatives from 2-bromo-2-(2-chlorophenyl) acetic acid, particularly hydrazone compounds 4a and 4b. Both in-vitro and in-vivo assays demonstrate these derivatives' strong antidiabetic and anti-hyperlipidemic properties. In a 15-d experiment, we administered 4a and 4b at doses of 2.5 and 5 mg/kg body weight, which effectively improved symptoms of alloxan-induced diabetes in mice. These symptoms included weight loss, increased water consumption and high blood glucose levels. The compounds also normalized abnormal levels of total cholesterol (TC), triacylglycerol (TG) and low-density lipoprotein cholesterol (LDL-C), while raising the levels of high-density lipoprotein cholesterol (HDLC). Computational analysis showed that these compounds effectively inhibited the α-glucosidase enzyme by interacting with key catalytic residues, specifically Asp214 and Asp349. These computational results were confirmed through in-vitro tests, where 4a and 4b showed strong α-glucosidase inhibitory activity, with IC50 values of 0.70 ± 0.11 and 10.29 ± 0.30 µM, respectively. These compounds were more effective than the standard drug, acarbose, which had an IC50 value of 873.34 ± 1.67 µM. Mechanistic studies further indicated competitive inhibition, reinforcing the therapeutic potential of 4a and 4b for NIDDM treatment.
Collapse
Affiliation(s)
- Waseem Ul Islam
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Hammad Khan
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan Mardan, Mardan, Pakistan
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Shaukat Ali
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Mateen
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
2
|
Zeyrek CT, Akman S, Ilhan IO, Kökbudak Z, Sarıpınar E, Akkoc S. Experimental and theoretical studies on 3-(4-chlorophenyl)-5-(4-ethoxyphenyl)-4,5-dihydropyrazole-1-carbonitrile: DFT quantum mechanical calculation, vibrational band analysis, prediction of activity spectra, and molecular docking. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Karatas H, Aydin M, Turkmenoglu B, Akkoc S, Sahin O, Kokbudak Z. Design, Synthesis, Cytotoxic Activity, and
In Silico
Studies of New Schiff Bases Including Pyrimidine Core. ChemistrySelect 2023. [DOI: 10.1002/slct.202204221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Halis Karatas
- Department of Chemistry Erciyes University Faculty of Sciences 38039 Kayseri Türkiye
| | - Meltem Aydin
- Department of Chemistry Erciyes University Faculty of Sciences 38039 Kayseri Türkiye
| | - Burçin Turkmenoglu
- Department of Analytical Chemistry Erzincan Binali Yıldırım University Faculty of Pharmacy 24002 Erzincan Türkiye
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences Suleyman Demirel University Faculty of Pharmacy 32260 Isparta Türkiye
- Bahçeşehir University Faculty of Engineering and Natural Sciences 34353 Istanbul Türkiye
| | - Onur Sahin
- Department of Occupational Health & Safety Sinop University Faculty of Health Sciences 57000 Sinop Türkiye
| | - Zülbiye Kokbudak
- Department of Chemistry Erciyes University Faculty of Sciences 38039 Kayseri Türkiye
| |
Collapse
|
4
|
Akman S, Akkoc S, Zeyrek CT, Muhammed MT, Ilhan IO. Density functional modeling, and molecular docking with SARS-CoV-2 spike protein (Wuhan) and omicron S protein (variant) studies of new heterocyclic compounds including a pyrazoline nucleus. J Biomol Struct Dyn 2023; 41:12951-12965. [PMID: 36709442 DOI: 10.1080/07391102.2023.2169765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Nowadays, different vaccines and antiviral drugs have been developed and their effectiveness has been proven against SARS-CoV-2. Pyrazoline derivatives are biologically active molecules and exhibit broad-spectrum biological activity properties. In this scope, four new molecules (4a-d) including a pyrazoline core were synthesized in order to predict their antiviral properties theoretically. Compounds 4a-d were purified by the crystallization method. The structures of 4a-d were completely characterized by NMR, IR, and elemental analysis. The molecular structures of the compounds in the ground state have been optimized using density functional theory with the B3LYP/6-31++G(d,p) level. The quantum chemical parameters were predicted by density functional theory calculations. Moreover, the molecular docking studies of 4a-d with SARS-CoV-2 Spike protein (Wuhan) and omicron S protein (variant) were presented to investigate and predict potential interactions. The binding sites, binding types and energies, bond distances of the non-covalent interactions and calculated inhibition constants (calc. Ki) as a consequence of molecular docking for 4a-d were presented in this study. Furthermore, the stability of the protein-4a complex obtained from the docking was investigated through molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soner Akman
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Celal Tugrul Zeyrek
- Department of Medical Services and Techniques, Çankırı Karatekin University, Çankırı, Turkey
| | - Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Suleyman Demirel University, Isparta, Turkey
| | - Ilhan Ozer Ilhan
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Rahimi Z, Bayat M, Hosseini H. New multicomponent reactions in water: a facile synthesis of 1,3-dioxo-2-indanilidene-heterocyclic scaffolds and indenoquinoxalines through reaction of ninhydrin-malononitrile adduct with diverse N-binucleophiles. RSC Adv 2022; 12:33772-33779. [PMID: 36505672 PMCID: PMC9685738 DOI: 10.1039/d2ra06469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
We report here a highly efficient green approach for the synthesis of imidazolidin-2-ylidene-indenedione, pyrimidine-2-ylidene-indenedione and indenoquinoxaline derivatives through the one-pot three-component reaction between ninhydrin, malononitrile and various diamines in water medium under catalyst-free conditions. High yields (73-98%) of the target products were achieved with short reaction times at room temperature. Simple workup, no column chromatography, good to excellent yields, rapid reaction and green solvent are the prominent advantages of this protocol.
Collapse
Affiliation(s)
- Zahra Rahimi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Hajar Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| |
Collapse
|
6
|
Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T. Drug design of new therapeutic agents: molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J Biomol Struct Dyn 2022:1-14. [DOI: 10.1080/07391102.2022.2111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| | - Halis Karatas
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Zülbiye Kökbudak
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Ahmet Ceylan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| |
Collapse
|