1
|
Yan X, Gao LX, Cao ZT, Gan SY, Fu YQ, Li J, Xiang DJ, Zhou YB, Wang WL. Novel functionalized benzimidazole-salicylic acid derivatives: synthesis, photophysical characteristics and biological applications. J Mater Chem B 2025; 13:3633-3643. [PMID: 39950756 DOI: 10.1039/d4tb02524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Although the benzimidazole moiety is a versatile heterocyclic unit that has been widely applied in optical materials and medicinal chemistry, there are few bifunctional small-molecule benzimidazole derivatives with bio-activity and fluorescence. In this work, a series of novel benzimidazole-salicylic acid molecules were designed and synthesized; their optical properties were evaluated and their potential biological application was explored. The representative compound 5q exhibited excellent fluorescence properties, displaying blue imaging in HeLa cells and zebrafish. Additionally, it exhibited high selectivity for Fe3+ ions and demonstrated a notable inhibitory activity with IC50 = 6.86 ± 2.82 μM against SHP1PTP. Further effort was applied to explore the potential capability of compound 5q to reactivate the activity of SHP1 when inhibited by Fe3+ ions, indicating that compound 5q could be a fluorescent modulator to adjust SHP1 enzyme activity in biological systems.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
- School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Tong Cao
- Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Su-Ya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Yi-Qiu Fu
- Beijing Chempion Biotechnology Co. Ltd, Beijing, 100010, China
| | - Jia Li
- Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu, 214105, China.
| | - Yu-Bo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, 528400, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
- School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| |
Collapse
|
2
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
3
|
Erden F. Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7060. [PMID: 38004990 PMCID: PMC10672206 DOI: 10.3390/ma16227060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the present work, cholesterol (Chol)-substituted zinc phthalocyanine (Chol-ZnPc) and its composite with graphene oxide (GO) were prepared for photodynamic therapy (PDT) applications. Briefly, Chol-substituted phthalonitrile (Chol-phthalonitrile) was synthesized first through the substitution of Chol to the phthalonitrile group over the oxygen bridge. Then, Chol-ZnPc was synthesized by a tetramerization reaction of Chol-phthalonitrile with ZnCl2 in a basic medium. Following this, GO was introduced to Chol-ZnPc, and the successful preparation of the samples was verified through FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, SEM, and elemental analysis. Regarding PDT properties, we report that Chol-ZnPc exhibited a singlet oxygen quantum yield (Φ∆) of 0.54, which is slightly lower than unsubstituted ZnPc. Upon introduction of GO, the GO/Chol-ZnPc composite exhibited a higher Φ∆, about 0.78, than that of unsubstituted ZnPc. Moreover, this enhancement was realized with a simultaneous improvement in fluorescence quantum yield (ΦF) to 0.36. In addition, DPPH results suggest low antioxidant activity in the composite despite the presence of GO. Overall, GO/Chol-ZnPc might provide combined benefits for PDT, particularly in terms of image guidance and singlet oxygen generation.
Collapse
Affiliation(s)
- Fuat Erden
- Department of Aeronautical Engineering, Sivas University of Science and Technology, 58000 Sivas, Türkiye
| |
Collapse
|
4
|
FARAJZADEH N, YENİLMEZ HY, YAŞA ATMACA G, ERDOĞMUŞ A, ALTUNTAŞ BAYIR Z. Sonophotochemical and photochemical efficiency of thiazole-containing metal phthalocyanines and their gold nanoconjugates. Turk J Chem 2023; 47:1085-1102. [PMID: 38173750 PMCID: PMC10760820 DOI: 10.55730/1300-0527.3596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
This study presents the synthesis of some metal {M = Zn(II), Lu(III), Si(IV)} phthalocyanines bearing chlorine and 2-(4-methylthiazol-5-yl) ethoxy groups at peripheral or axial positions. The newly synthesized metal phthalocyanines were characterized by applying FT-IR, 1H NMR, mass, and UV-Vis spectroscopic approaches. Additionally, the surface of gold nanoparticles was modified with zinc(II) and silicon(IV) phthalocyanines. The resultant nanoconjugates were characterized using TEM images. Moreover, the effect of metal ions and position of substituent, and gold nanoparticles on the photochemical and sonophotochemical properties of the studied phthalocyanines was investigated. The highest singlet oxygen quantum yield was obtained for the lutetium phthalocyanine by applying photochemical and sonophotochemical methods. However, the linkage of the zinc(II) and silicon(IV) phthalocyanines to the surface of gold nanoparticles improved significantly their singlet oxygen generation capacities.
Collapse
Affiliation(s)
- Nazli FARAJZADEH
- Department of Chemistry, İstanbul Technical University, Maslak, İstanbul,
Turkiye
| | | | - Göknur YAŞA ATMACA
- Department of Chemistry, Yıldız Technical University, Esenler, İstanbul,
Turkiye
| | - Ali ERDOĞMUŞ
- Department of Chemistry, Yıldız Technical University, Esenler, İstanbul,
Turkiye
| | - Zehra ALTUNTAŞ BAYIR
- Department of Chemistry, İstanbul Technical University, Maslak, İstanbul,
Turkiye
| |
Collapse
|
5
|
Linani A, Serseg T, Benarous K, Bou-Salah L, Yousfi M, Alama MN, Ashraf GM. Cupressus sempervirens L. flavonoids as potent inhibitors to xanthine oxidase: in vitro, molecular docking, ADMET and PASS studies. J Biomol Struct Dyn 2023; 41:7055-7068. [PMID: 36001586 DOI: 10.1080/07391102.2022.2114943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Excessive intake of purine-rich foods such as seafood and red meat leads to excess xanthine oxidase activity and provokes gout attacks. The aim of this paper is to evaluate in vitro and in silico, the inhibition effect of Cupressus sempervirens plant extracts (flavonoids (Cae) and alkaloids (CaK)) and its six derivative compounds on bovine xanthine oxidase (BXO). The in silico study consists of molecular docking with GOLD v4.0 based on the best PLPchem score (PLP) and prediction of biological activity with the PASS server tool. The inhibitors used were lignan (cp1), Amentoflavone (cp2), Cupressuflavone (cp3), Isocryptomerin (cp4), Hinokiflavone (cp5), and Neolignan (cp6). The in vitro results showed that CaK gives an IC50 of 3.52 ± 0.04 μg/ml. Similarly, Cae saved an IC50 of 8.46 ± 1.98 μg/ml compared with the control (2.82 ± 0.10 μg/ml). The in silico results show that cp1 was the best inhibitor model (PLP of 88.09) with approved pharmacokinetics. These findings suggest that cp1 and cp2 may offer good alternatives for the treatment of hyperuricemia; cp3 was moderate, while the others (cp4 to cp6) were considered weak inhibitors according to their PLP.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
- Biology department, Amar Telidji University, Laghouat, Algeria
| | - Leila Bou-Salah
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Mohammed Nabil Alama
- Department of Cardiology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Biyiklioglu Z, Keleş T, Sahin H. Synthesis and acetylcholinesterase enzyme inhibition properties of axially disubstituted silicon phthalocyanines and their quaternized derivatives. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Öztürmen BA, Barut B, Biyiklioglu Z. Synthesis, characterization, and α‐glucosidase, cholinesterases, and tyrosinase inhibitory effects of axial substituted silicon and peripheral tetra‐substituted copper (II), manganese (III) phthalocyanines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Berivan Arin Öztürmen
- Faculty of Science, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Zekeriya Biyiklioglu
- Faculty of Science, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| |
Collapse
|